Oesophageal, stomach, colon, and rectal cancers are all types of gastrointestinal malignancies. Gastrointestinal malignancies are responsible for around 20% of all cancer diagnoses and 22.5% of cancer deaths worldwide. Nearly 3.5 million new cases of gastrointestinal cancer have been reported worldwide, according to the WHO. Gastric cancer is one of the most common causes of cancer-related mortality worldwide. Due to the inconspicuous and non-specific symptoms and indicators of stomach cancer, the majority of cases are discovered only in advanced stages, with a poor prognosis. Early detection, on the other hand, can result in a 5 year survival rate of more than 90%. The use of AI in medicine has gotten a strong interest in the last decade. Endoscopic diagnosis with AI assistance is a prominent topic in the study. AI refers to a computer’s ability to perform a task often performed by intelligent persons, such as the "learn" feature, which mimics human cognition. Two AI subfields are machine learning and deep learning. In medical computer vision, artificial intelligence based diagnostic support systems, particularly Convolutional Neural Network (CNN) based image processing tools, have shown considerable promise. XAI (Explainable Artificial Intelligence), a new discipline that meets this need and offers numerous approaches for providing some level of explanation to deep learning AI systems, solves this need. This systematic review summarizes recent studies in gastric cancer and CNN based approaches for characterization and prognostication of gastrointestinal cancer pathology, as well as potential limits and future possibilities for AI in gastric cancer.

1.
Jemal
A.
et. al.
Annual Report to the Nation on the Status of Cancer, 1975–2014, Featuring Survival
.
JNCI: Journal of the National Cancer Institute
,
109
(
9
) (
2017
).
2.
Yu
C.
,
Helwig
E.J.
Artificial intelligence in gastric cancer: a translational narrative review
.
Ann Transl Med.
9
(
3
),
269
(
2021
).
3.
Le Berre
C.
,
Sandborn
W.J.
,
Aridhi
S.
,
Devignes
M.D.
,
Fournier
L.
,
Smaïl-Tabbone
M.
,
Danese
S.
,
Peyrin-Biroulet
L.
Application of Artificial Intelligence to Gastroenterology and Hepatology
.
Gastroenterology.
158
(
1
),
76
94
(
2020
).
4.
Yang
,
Y. J.
and
Bang
,
C. S.
Application of artificial intelligence in gastroenterology
.
World Journal of Gastroenterology
,
25
(
14
),
1666
1683
(
2022
).
5.
He
Y.S.
,
Su
J.R.
,
Li
Z
,
Zuo
X.L.
,
Li
Y.Q.
Application of artificial intelligence in gastrointestinal endoscopy
.
J Dig Dis.
20
(
12
),
623
630
. (
2019
).
6.
Acs
B.
,
Rantalainen
M.
,
Hartman
J.
Artificial intelligence as the next step towards precision pathology
.
J Intern Med.
,
288
(
1
),
62
81
(
2019
).
7.
Bi
W.L.
,
Hosny
A.
,
Schabath
M.B.
,
Giger
M.L.
,
Birkbak
N.J.
,
Mehrtash
A
,
Allison
T
,
Arnaout
O
,
Abbosh
C
,
Dunn
I.F.
,
Mak
R.H.
,
Tamimi
R.M.
,
Tempany
C.M.
,
Swanton
C
,
Hoffmann
U
,
Schwartz
L.H.
,
Gillies
R.J.
,
Huang
R.Y.
,
Aerts
H.J.WL
.
Artificial intelligence in cancer imaging: Clinical challenges and applications
.
CA Cancer J Clin.
,
69
(
2
),
127
157
.(
2019
).
8.
F.
Doshi-Velez
,
Kim
,
B.
Towards A Rigorous Science of Interpretable Machine Learning
. (
2017
)
arXiv.
.
9.
S.
Tonekaboni
,
S.
Joshi
,
M.D.
McCradden
,
A.
Goldenberg
,
What Clinicians Want: Contextualizing Explainable Machine Learning for Clinical End Use
,.
Proceedings of Machine Learning Research,
,
106
,
359
380
(
2019
).
10.
S.
Lapuschkin
,
S.
Wüaldchen
,
A.
Binder
,
G.
Montavon
,
W.
Samek
,
K.
Müller
,
Unmasking clever hans predictors and assessing what machines really learn
,
Nat. Commun.
10
, (
2019
),
11.
C.
Zucco
,
H.
Liang
,
G.D.
Fatta
,
M.
Cannataro
,
Explainable sentiment analysis with applications in medicine
,
IEEE International Conference on Bioinformatics and Biomedicine
,
1740
1747
, (
2018
).
12.
K.
Kallianos
,
J.
Mongan
,
S.
Antani
,
T.
Henry
,
A.
Taylor
,
J.
Abuya
,
M.
Kohli
,
How far have we come? artificial intelligence for chest radiograph interpretation
,
Clin. Radiol.
,
74
(
5
),
338
345
, (
2019
)
13.
Lamy
,
J.
,
Sekar
,
B.
,
Guezennec
,
G.
,
Bouaud
,
J.
, &
Séroussi
,
B.
Explainable artificial intelligence for breast cancer: A visual case-based reasoning approach
.
Artificial Intelligence in Medicine
,
94
,
42
53
. (
2019
)
14.
Codella
,
N. C. F.
,
Lin
,
C.-C.
,
Halpern
,
A.
,
Hind
,
M.
,
Feris
,
R.
, and
Smith
,
J. R.
,
Collaborative Human-AI (CHAI): Evidence-Based Interpretable Melanoma Classification in Dermoscopic Images
,
2018
.
15.
Preece
,
A.
,
Harborne
,
D.
,
Braines
,
D.
,
Tomsett
,
R.
, &
Chakraborty
,
S.
Stakeholders in Explainable A.I
. (
2018
).
arXiv.
16.
Barredo
Arrieta
, A.,
Díaz-Rodríguez
,
N.
,
Del Ser
,
J.
,
Bennetot
,
A.
,
Tabik
,
S.
,
Barbado
,
A.
,
Garcia
,
S.
,
Gil-Lopez
,
S.
,
Molina
,
D.
,
Benjamins
,
R.
,
Chatila
,
R.
, &
Herrera
,
F.
Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI
.
Information Fusion
,
58
,
82
115
(
2020
).
17.
Fukushima
,
K.
Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position
.
Biol. Cybernetics
36
,
193
202
(
1980
).
18.
Lo
S.B.
,
Lou
S.A.
,
Lin
J.S.
,
Freedman
M.T.
,
Chien
M.V.
,
Mun
S.K.
Artificial convolution neural network techniques and applications for lung nodule detection
.
IEEE Trans Med Imaging.
14
(
4
),
711
8
(
1995
).
19.
Y.
Lecun
,
L.
Bottou
,
Y.
Bengio
and
P.
Haffner
,
Gradient-based learning applied to document recognition
, in
Proceedings of the IEEE
,
86
(
11
),
2278
2324
, (
1998
).
20.
A.
Krizhevsky
,
I.
Sutskever
, and
G. E.
Hinton
,
ImageNet classification with deep convolutional neural networks
,
Proc. Adv. Neural Inf. Process. Syst.
,
1097
1105
(
2012
).
21.
Esteva
,
A.
,
Kuprel
,
B.
,
Novoa
,
R.
et al
Dermatologist-level classification of skin cancer with deep neural networks
.
Nature
542
,
115
118
(
2017
).
22.
Gulshan
V
,
Peng
L
,
Coram
M
,
Stumpe
M.C.
,
Wu
D.
,
Narayanaswamy
A.
,
Venugopalan
S.
,
Widner
K.
,
Madams
T.
,
Cuadros
J.
,
Kim
R.
,
Raman
R.
,
Nelson
P.C.
,
Mega
J.L.
,
Webster
D.R.
Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs
.
JAMA.
316
(
22
),
2402
-
2410
(
2016
).
23.
D. K.
Iakovidis
,
S. V.
Georgakopoulos
,
M.
Vasilakakis
,
A.
Koulaouzidis
and
V. P.
Plagianakos
,
Detecting and Locating Gastrointestinal Anomalies Using Deep Learning and Iterative Cluster Unification
,
IEEE Transactions on Medical Imaging
37
(
10
),
2196
2210
, (
2018
).
24.
Shin
,
Y.
,
Qadir
,
H. A.
,
Aabakken
,
L.
,
Bergsland
,
J.
, &
Balasingham
,
I.
Automatic Colon Polyp Detection using Region based Deep CNN and Post Learning Approaches
. (
2019
)
arXiv.
25.
Byrne
M.F.
,
Chapados
N.
,
Soudan
F.
,
Oertel
C.
,
Linares Pérez
M.
,
Kelly
R.
,
Iqbal
N.
,
Chandelier
F.
,
Rex
D.K.
Real-time differentiation of adenomatous and hyperplastic diminutive colorectal polyps during analysis of unaltered videos of standard colonoscopy using a deep learning model
.
Gut. 2019
,
68
(
1
),
94
100
(
2019
).
26.
L.
Yu
,
H.
Chen
,
Q.
Dou
,
J.
Qin
and
P. A.
Heng
,
Integrating Online and Offline Three-Dimensional Deep Learning for Automated Polyp Detection in Colonoscopy Videos
,
IEEE Journal of Biomedical and Health Informatics,
21
(
1
),
65
75
, (
2017
).
27.
Xiao
Jia
,
Meng
M.Q.
A deep convolutional neural network for bleeding detection in Wireless Capsule Endoscopy images
.
Annu Int Conf IEEE Eng Med Biol Soc.
639
642
(
2016
).
28.
Liu
,
Xiaoqi
et al.
Transfer Learning with Convolutional Neural Network for Early Gastric Cancer Classification on Magnifiying Narrow-Band Imaging Images
.
25th IEEE International Conference on Image Processing (ICIP)
,
1388
1392
(
2018
).
29.
K.
He
,
X.
Zhang
,
S.
Ren
and
J.
Sun
,
Deep Residual Learning for Image Recognition
,
IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
770
778
,(
2016
).
30.
Tjoa
,
E.
, &
Guan
,
C.
A Survey on Explainable Artificial Intelligence (XAI): Towards Medical XAI
. (
2019
).
arXiv.
31.
Zeiler
,
M. D.
,
Taylor
,
G. W.
, &
Fergus
,
R.
Adaptive deconvolutional networks for mid and high level feature learning
.
International Conference on Computer Vision, ICCV
2018
2025
,(
2011
).
32.
Nazneen Fatema
Rajani
and
Raymond
Mooney
.
Stacking with Auxiliary Features for Visual Question Answering
. In
Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies,
1
,
2217
2226
, (
2018
).
33.
Zeiler
,
M.D.
,
Fergus
,
R.
Visualizing and Understanding Convolutional Networks
.
Lecture Notes in Computer Science
,
8689
, (
2014
).
34.
B.
Zhou
,
A.
Khosla
,
A.
Lapedriza
,
A.
Oliva
and
A.
Torralba
,
Learning Deep Features for Discriminative Localization
,
IEEE Conference on Computer Vision and Pattern Recognition (CVPR
),
2921
2929
, (
2016
).
35.
Bach
,
S.
,
Binder
,
A.
,
Montavon
,
G.
,
Klauschen
,
F.
,
Müller
,
R.
, &
Samek
,
W.
On Pixel-Wise Explanations for Non-Linear Classifier Decisions by Layer-Wise Relevance Propagation
.
PLOS ONE
,
10
(
7
), (
2015
).
36.
Selvaraju
,
R. R.
,
Cogswell
,
M.
,
Das
,
A.
,
Vedantam
,
R.
,
Parikh
,
D.
, &
Batra
,
D.
Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization
.(
2016
).
arXiv.
37.
Simonyan
,
K.
,
Vedaldi
,
A.
, and
Zisserman
,
A.
Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps
. (
2013
)
arXiv.
38.
Springenberg
,
J. T.
,
Dosovitskiy
,
A.
,
Brox
,
T.
, &
Riedmiller
,
M.
Striving for Simplicity: The All Convolutional Net
.(
2014
).
arXiv.
39.
Sundararajan
,
M.
,
Taly
,
A.
, &
Yan
,
Q.
Axiomatic Attribution for Deep Networks
. (
2017
)
arXiv.
40.
Shrikumar
,
A.
,
Greenside
,
P.
,
Shcherbina
,
A.
, &
Kundaje
,
A.
Not Just a Black Box: Learning Important Features Through Propagating Activation Differences
.(
2016
)
arXiv.
41.
Ribeiro
,
M. T.
,
Singh
,
S.
, &
Guestrin
,
C.
Why Should I Trust You?: Explaining the Predictions of Any Classifier
.(
2016
)
arXiv.
42.
Yoon
H.J.
,
Kim
S.
,
Kim
J.H.
,
Keum
J.S.
,
Oh
S.I.
,
Jo
J.
,
Chun
J.
,
Youn
Y.H.
,
Park
H.
,
Kwon
I.G.
,
Choi
S.H.
,
Noh
S.H.
A Lesion-Based Convolutional Neural Network Improves Endoscopic Detection and Depth Prediction of Early Gastric Cancer
.
J Clin Med.
8
(
9
),
1310
, (
2019
).
43.
Zhu
Y.
,
Wang
Q.C.
,
Xu
M.D.
,
Zhang
Z
,
Cheng
J
,
Zhong
Y.S.
,
Zhang
Y.Q.
,
Chen
W.F.
,
Yao
L.Q.
,
Zhou
P.H.
,
Li
Q.L.
Application of convolutional neural network in the diagnosis of the invasion depth of gastric cancer based on conventional endoscopy
.
Gastrointest Endosc. 2019
,
89
(
4
),
806
815
,(
2019
).
44.
Li
L.
,
Chen
Y
,
Shen
Z
,
Zhang
X
,
Sang
J
,
Ding
Y
,
Yang
X
,
Li
J
,
Chen
M
,
Jin
C
,
Chen
C
,
Yu
C.
Convolutional neural network for the diagnosis of early gastric cancer based on magnifying narrow band imaging
.
Gastric Cancer. 2020
,
23
(
1
),
126
132
, (
2019
)
45.
Hirasawa
T.
,
Aoyama
K.
,
Tanimoto
T.
,
Ishihara
S.
,
Shichijo
S.
,
Ozawa
T.
,
Ohnishi
T.
,
Fujishiro
M.
,
Matsuo
K.
,
Fujisaki
J.
,
Tada
T.
Application of artificial intelligence using a convolutional neural network for detecting gastric cancer in endoscopic images
.
Gastric Cancer. 2018
,
21
(
4
),
653
660
, (
2018
).
46.
Ishioka
M.
,
Hirasawa
T.
,
Tada
T.
Detecting gastric cancer from video images using convolutional neural networks
.
Dig Endosc.
,
31
(
2
), (
2019
).
47.
Luo
H.
,
Xu
G.
,
Li
C.
,
He
L.
,
Luo
L.
,
Wang
Z.
,
Jing
B.
,
Deng
Y.
,
Jin
Y.
,
Li
Y.
,
Li
B.
,
Tan
W.
,
He
,
C.
,
Seeruttun
S.R.
,
Wu
Q.
,
Huang
J
,
Huang
D.W.
,
Chen
B
,
Lin
S.B.
,
Chen
Q.M.
,
Yuan
C.M.
,
Chen
H.X.
,
Pu
H.Y.
,
Zhou
F
,
He
Y
,
Xu
R.H.
Real-time artificial intelligence for detection of upper gastrointestinal cancer by endoscopy: a multicentre, case-control, diagnostic study
.
Lancet Oncol.
20
(
12
),
1645
1654
,(
2019
).
48.
Horiuchi
Y
,
Aoyama
K
,
Tokai
Y
,
Hirasawa
T
,
Yoshimizu
S
,
Ishiyama
A
,
Yoshio
T
,
Tsuchida
T
,
Fujisaki
J
,
Tada
T.
Convolutional Neural Network for Differentiating Gastric Cancer from Gastritis Using Magnified Endoscopy with Narrow Band Imaging
.
Dig Dis Sci.
,
65
(
5
),
1355
1363
(
2019
).
This content is only available via PDF.
You do not currently have access to this content.