In this study, ZSM-5 catalyst was synthesized from coal fly ash as alumina and silica source and rice husk ash as an additional silica source using seeded ZSM-5 without adding any template. First, coal fly ash and rice husk were subjected to pre-treatment in order to extract silicate (SiO44-) and aluminate (AlO45-) and separate them from the impurities. Then the ZSM-5 zeolite was synthesized through hydrothermal treatment using seed of ZSM-5 giving molar ratio 12 NaOH: 30 SiO2: 0.75 Al2O3: 1800 H2O. The as-synthesized ZSM-5(A) then was characterized by X-Ray Diffraction, Scanning Electron Microscope, and Surface Area Analyzer. The results showed that the XRD pattern of as-synthesized ZSM-5 using non template method has an evidence of MFI (Mordenite Inverted Framework) structure with peaks at 2θ=8.161, 9.041, 23.249, 24.003, and 24.632o 0 indicative of successfully synthesized ZSM-5 structure. The SEM image showed the rough surface of hexagonal crystals from the ZSM-5 structure, indicative of mesoporosity in the structure. The N2 isotherm adsorption exhibited a type IV H4 curve, which indicated the material has mesoporosity, and analysis showed the radius pore size of as-synthesized ZSM-5 is 9.41 nm. This confirms that the as-synthesized ZSM-5 has mesopore properties. This as-synthesized ZSM-5 then was impregnated with Fe2O3 to improve its catalytic activity towards methane conversion reaction. The result of the catalytic test, both of Fe-impregnated synthetic (Fe/ZSM-5(A)) and as-synthesized ZSM-5 (ZSM-5(A)) has potential for conversion of methane to methanol with a percentage yield of methanol are 10.04 % and 13.12 %.

1.
Peraturan Pemerintah (PP) No 22 Tahun 2021
, vol.
1
, no.
078487A
, p.
483
,
2021
, [Online]. Available: http://www.jdih.setjen.kemendagri.go.id/
2.
K.
Kordatos
,
S.
Gavela
,
A.
Ntziouni
,
K. N.
Pistiolas
,
A.
Kyritsi
, and
V.
Kasselouri-Rigopoulou
.
Microporous Mesoporous Mater
, vol.
115
, no.
1–2
, pp.
189
196
(
2008
).
3.
A.
Metta
,
S.
Br
, and
H.
Saputra
,
Rekayasa Proses
, vol.
8
, no.
2
, pp.
62
66
(
2014
).
4.
M.
Ravi
,
M.
Ranocchiari
, and
J. A.
van Bokhoven
, “
Angew. Chemie-Int. Ed.
, vol.
56
, no.
52
, pp.
16464
16483
(
2017
).
5.
B. S.
Purwasasmita
and
A. W. Agung
Kurnia
,
J. Zeolit Indones.
, vol.
9
, no.
1
, pp.
40
45
(
2010
).
6.
R. Y.
Kurniawan
and
N.
Widiastuti
,
Jurnal Sains dan Seni ITS
, vol.
6
no.
1
pp
2337
3520
(
2017
).
7.
Darmansyah
,
Simparmin
, B. G,
Dery
,
W
,
dan
Hens
, S.,
Pros. SNTK Topi
, vol.
5
, no. November, pp.
273
283
, (
2013
).
8.
Y. K.
Krisnandi
et al,
Procedia Chemistry
, vol.
14
, pp.
508
515
, (
2015
).
9.
M.
Bertau
,
H.
Offermanns
,
L.
Plass
,
F.
Schmidt
,
H.-J.
Wernicke
,
Asinger’s Vision Today Springer Science & Business Media
,
New York
(
2014
).
10.
Y.
Yan
,
X.
Guo
,
Y.
Zhang
,
Y.
Tang
Catal.Sci.Tech.
,
5
(
2015
),pp.
772
785
.
11.
S.
Mintova
,
J.-P.
Gilson
,
V.
Valtchev
Nanoscale
,
5
(
2013
), pp.
6693
6703
.
12.
V. P.
Shiralkar
,
P. N.
Joshi
,
M. J.
Eapen
, and
B. S.
Rao
,
Zeolites
, vol.
11
, no.
5
, pp.
511
516
(
1991
).
13.
M.
Otake
,
Zeolites
, vol.
14
, no.
1
, pp.
42
52
(
1994
).
14.
X.
Huang
and
Z.
Wang
,
Cuihua Xuebao/Chinese J. Catal.
, vol.
32
, no.
11
, pp.
1702
1711
(
2011
).
15.
N.
Ren
,
J.
Bronić
,
B.
Subotić
,
X. C.
Lv
,
Z. J.
Yang
, and
Y.
Tang
,
Microporous Mesoporous Mater.
, vol.
139
, no.
1–3
, pp.
197
206
(
2011
).
16.
C. Martinez
Ssanchez
,
J.
Pérez
Pariente Zeolites and Ordered Porous Solids: Fundamentals and Applications
,
Universitat Politècnica de València
(
2011
)
17.
Q.
Yu
,
Q.
Zhang
,
J.
Liu
,
C.
Li
,
Q.
Cui
CrystEngComm
,
15
(
2013
), pp.
7680
7687
18.
C.S.
Cundy
,
P.A. Cox Chem. Rev.
,
103
(
2003
), pp.
663
702
.
19.
C.S.
Cundy
,
P.A. Cox Microporous Mesoporous Mater
,
82
(
2005
), pp.
1
78
20.
A.
Javdani
,
J.
Ahmadpour
,
F.
Yaripour
,
Microporous and Mesoporous Materials
, Volume
284
, August
2019
, Pages
443
458
21.
J. L.
Jiang
,
Russian Journal of Physical Chemistry A,
vol.
91
, no.
10
, pp.
1883
1889
(
2017
).
22.
C.
Colella
and W.S,
Microporous Mesoporous Mater.
, vol.
189
, pp.
4
10
(
2014
).
23.
B. M.
Omar
,
M.
Bita
,
I.
Louafi
, and
A.
Djouadi
,
Methods X
, vol.
5
, pp.
277
282
(
2018
).
24.
Database of Zeolite Structures
, https://asia.iza-structure.org
25.
C. C.
Liu
et al,
Fuel,
vol.
263
(
2019
).
26.
J. S.
Oliveira
et al,
Materials Research
, vol.
19
, no.
6
, pp.
1399
1406
(
2016
).
27.
A.
Tavasoli
et al,
Fuel Process Technol.
, vol.
90
, pp.
1486
1494
(
2009
)
28.
Jimmy
et al,
IOP Conf. Ser.: Mater. Sci. Eng
, vol.
546
, (
2019
).
29.
Technical Data Sheet of ACS Material Mesoporous Molecular Sieve Nano ZSM-5
, www.acsmaterial.com
30.
M. H.
Sun
et al,
Microporous and Mesoporous Materials
, vol.
182
, pp.
122
135
(
2013
).
31.
Y. K.
Krisnandi
et al,
Heliyon
, vol.
7
(
2021
)
32.
Yan
et al,
ACS Omega
, vol.
7
, pp.
17811
17821
(
2022
)
33.
S. D.
Nurherdiana
et al,
NST Proceedings
, pp.
316
325
, (
2022
).
34.
A. N.
Ramadhani
,
I.
Abdullah
, and
Y. K.
Krisnandi
,
Bulletin of Chemical Reaction Engineering & Catalysis
, vol.
17
, no.
1
, pp.
225
239
(
2022
).
35.
M.
Nadem
.
Surface Area”Brunauer-Emmert-Teller (BET
).
2015
. pp.
585
608
36.
M
Rafli
,
M
Faisal
,
D A
Nurani
,
I R
Saragi
and
Y K
Krisnandi
,
IOP Conf. Series: Materials Science and Engineering
902
(
2020
)
This content is only available via PDF.
You do not currently have access to this content.