Flat-plate solar collectors (FPSCs) are the most effective and environmentally friendly heating systems available. They are frequently used to convert solar radiation into usable heat for a variety of thermal applications, because of their superior thermo-physical features, the use of Nano-fluids in FPSCs is a useful technique to improve FPSC performance. Nano-fluids are advanced colloidal suspensions containing Nano-sized particles that have been researched over the last two decades and identified a fluid composed of strong nanoparticles with a diameter of smaller than (100 nm). These micro-particles aid in improving the thermal conductivity and convective heat transfer of liquids when mixed with the base fluid. The current study provides an in-depth review of the scientific advances in the field of nano-fluids on flat-plate solar collectors. Previous research on the usage of nano-fluids in FPSCs shows that nano-fluids can be used successfully to improve the efficiency of flat-plate collectors. Though several nano-fluids have been reviewed as solar collector operating fluids. Nano-fluids have greater pressure drops than liquids, and their pressure drops and hence pumping power rise as the volume flow rate increases. Additionally, the article discusses the concept of nano-fluids, the different forms of nanoparticles, the methods for preparing Nano-fluids, and their thermos-physical properties. The article concludes with a few observations and suggestions on the usage of Nano-fluids in flat-plate solar collectors. This article summarizes the numerous research studies conducted in this region, which may prove useful for future experimental studies.

1.
A.
Jamar
,
Z.A.A.
Majid
,
W.H.
Azmi
M.
Norhafana
and
A.A.
Razak
A review of water heating system for solar energy applications
.
International Communications in Heat and Mass Transfer
76
:
178
187
(
2016
).
2.
W.
Xiaowu
and
H.
Ben
Exergy analysis of domestic-scale solar water heaters
.
Renewable and Sustainable Energy Reviews
9
:
638
645
(
2005
).
3.
N.J.
Vickers
Animal communication: when i’m calling you, will you answer too?
Current biology
27
:
R713
R715
(
2017
).
4.
C.D.
Ho
and
T.C.
Chen
The recycle effect on the collector efficiency improvement of double-pass sheet-and-tube solar water heaters with external recycle
.
Renewable Energy
31
:
953
970
(
2006
).
5.
X.Q.
Wang
and
A.S.
Mujumdar
Heat transfer characteristics of nanofluids: a review.
International journal of thermal sciences
46
:
1
19
(
2007
).
6.
S. US.
Choi
,
J.A.
Eastman
Enhancing thermal conductivity of fluids with nanoparticles
.
Argonne National Lab.(ANL
),
Argonne, IL (United States
) (
1995
).
7.
Y.
Yang
,
Z.G.
Zhang
and
E.A.
Grulke
Heat transfer properties of nanoparticle-in-fluid dispersions (nanofluids) in laminar flow.
International journal of heat and mass transfer
48
:
1107
1116
(
2005
).
8.
D.
Tripathi
and
O.A.
Bég
A study on peristaltic flow of nanofluids: Application in drug delivery systems.
International Journal of Heat and Mass Transfer
70
:
61
70
(
2014
).
9.
D.P.
Kulkarni
,
D.K.
Das
,
R.S.
Vajjha
Application of nanofluids in heating buildings and reducing pollution.
Applied Energy
86
:
2566
2573
(
2009
).
10.
O.A.
Alomair
,
K.M.
Matar
and
Y.H.
Alsaeed
Nanofluids application for heavy oil recovery
.
Society of Petroleum Engineers - SPE Asia Pacific Oil and Gas Conference and Exhibition, APOGCE 2014 - Changing the Game: Opportunities, Challenges and Solutions
2
:
1346
1363
(
2014
).
11.
D.P.
Kulkarni
,
R.S.
Vajjha
,
D.K.
Das
,
D.
Oliva
Application of aluminum oxide nanofluids in diesel electric generator as jacket water coolant
.
Applied Thermal Engineering
28
:
1774
1781
(
2008
).
12.
K.J. Park
K-J
,
D.
Jung
Boiling heat transfer enhancement with carbon nanotubes for refrigerants used in building air-conditioning
.
Energy and Buildings
39
:
1061
1064
(
2007
).
13.
Z.
Said
,
R.
Saidur
,
N.A.
Rahim
and
M.A.
Alim
Analyses of exergy efficiency and pumping power for a conventional flat plate solar collector using SWCNTs based nanofluid
.
Energy and Buildings
78
:
1
9
(
2014
).
14.
A.
Layek
,
J.S.
Saini
,
S.C.
Solanki
Second law optimization of a solar air heater having chamfered rib-groove roughness on absorber plate
.
Renewable Energy
32
:
1967
1980
(
2007
).
15.
K.M.
Pandey
and
R.
Chaurasiya
A review on analysis and development of solar flat plate collector.
Renewable and Sustainable Energy Reviews
67
:
641
650
(
2017
).
16.
M.A.
Alim
,
Z.
Abdin
,
R. Saidur A.
Hepbasli
,
M.A.
Khairul
and
N.A.
Rahim
Analyses of entropy generation and pressure drop for a conventional flat plate solar collector using different types of metal oxide nanofluids.
Energy and Buildings
66
:
289
296
(
2013
).
17.
S.K.
Verma
,
A.K.
Tiwari
,
D.S.
Chauhan
Experimental evaluation of flat plate solar collector using nanofluids.
Energy conversion and Management
134
:
103
115
(
2017
).
18.
O.
Mahian
,
A.
Kianifar
,
A.Z.
Sahin
and
S.
Wongwises
Heat Transfer, Pressure Drop, and Entropy Generation in a Solar Collector Using SiO2/Water Nanofluids: Effects of Nanoparticle Size and pH
.
Journal of Heat Transfer
137
(
2015
).
19.
S.K.
Das
,
S.US.
Choi
,
H.E.
Patel
Heat transfer in nanofluids—a review
.
Heat transfer engineering
27
:
3
19
(
2006
).
20.
K.
Khanafer
and
K.
Vafai
A review on the applications of nanofluids in solar energy field
.
Renewable Energy
123
:
398
406
(
2018
).
21.
E.
Bellos
,
Z.
Said
and
C.
Tzivanidis
The use of nanofluids in solar concentrating technologies: A comprehensive review
.
Journal of Cleaner Production
196
:
84
99
(
2018
).
22.
H.A.
Mohammed
,
A.A.
Al-Aswadi
,
N.H.
Shuaib
,
R.
Saidur
Convective heat transfer and fluid flow study over a step using nanofluids: A review
.
Renewable and Sustainable Energy Reviews
15
:
2921
2939
(
2011
).
23.
A.N.
Kozitsina
,
T.S.
Svalova
,
N.N.
Malysheva
,
A.V.
Okhokhonin
,
M.B.
Vidrevich
,
K.Z.
Brainina
Sensors based on bio and biomimetic receptors in medical diagnostic, environment, and food analysis.
Biosensors
8
:
35
(
2018
).
24.
H.
Chang
,
C.S.
Jwo
,
P.S.
Fan
,
S.H.
Pai
Process optimization and material properties for nanofluid manufacturing
.
The International Journal of Advanced Manufacturing Technology
34
:
300
306
(
2007
).
25.
P
Raj
and
S.
Subudhi
A review of studies using nanofluids in flat-plate and direct absorption solar collectors.
Renewable and Sustainable Energy Reviews
84
:
54
74
(
2018
).
26.
S.A.
Angayarkanni
and
J.
Philip
Review on thermal properties of nanofluids: Recent developments.
Advances in colloid and interface science
225
:
146
176
(
2015
).
27.
W.
Yu
and
S.US.
Choi
The role of interfacial layers in the enhanced thermal conductivity of nanofluids: A renovated Maxwell model.
Journal of Nanoparticle Research
5
:
167
171
(
2003
).
28.
Y.
Xuan
and
W.
Roetzel
Conceptions for heat transfer correlation of nanofluids.
International Journal of heat and Mass transfer
43
:
3701
3707
(
2000
).
29.
B.C.
Pak
and
Y.I.
Cho
Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles.
Experimental Heat Transfer an International Journal
11
:
151
170
(
1998
).
30.
M.A.
Sharafeldin
and
G.
Gróf
Experimental investigation of flat plate solar collector using CeO2−water nanofluid
.
Energy Conversion and Management
155
:
32
41
(
2018
).
31.
M.
Ghanbarpour
,
E.B.
Haghigi
and
R.
Khodabandeh
Thermal properties and rheological behavior of water based Al2O3 nanofluid as a heat transfer fluid.
Experimental Thermal and Fluid Science
53
:
227
235
. (
2014
).
32.
P.
Naphon
,
P.
Assadamongkol
and
T.
Borirak
Experimental investigation of titanium nanofluids on the heat pipe thermal efficiency
.
International Communications in Heat and Mass Transfer
35
:
1316
1319
(
2008
).
33.
I.
Gherasim
,
G.
Roy
,
C.T.
Nguyen
and
D.
Vo-Ngoc
Experimental investigation of nanofluids in confined laminar radial flows
.
International Journal of Thermal Sciences
48
:
1486
1493
(
2009
).
34.
M.
Corcione
Empirical correlating equations for predicting the effective thermal conductivity and dynamic viscosity of nanofluids.
Energy Conversion and Management
52
:
789
793
(
2011
).
35.
H.Y.
Wong
Handbook of essential formulae and data on heat transfer for engineers
.
Addison-Wesley Longman Limited
(
1977
).
36.
J.A.
Duffie
and
W.A.
Beckman
Solar engineering of thermal processes
.
John Wiley & Sons
(
2013
).
37.
S.A.
Kalogirou
,
S. Karellas K.
Braimakis
,
C.
Stanciu
and
v.
Badescu
Exergy analysis of solar thermal collectors and processes
.
Progress in Energy and Combustion Science
56
:
106
137
(
2016
).
38.
A.A.R.
Darzi
,
M.
Farhadi
,
K.
Sedighi
,
R.
Shafaghat
and
K.
Zabihi
Experimental investigation of turbulent heat transfer and flow characteristics of SiO 2/water nanofluid within helically corrugated tubes.
International Communications in Heat and Mass Transfer
39
:
1425
1434
(
2012
).
39.
Q.
He
,
S.
Zeng
and
S.
Wang
Experimental investigation on the efficiency of flat-plate solar collectors with nanofluids
.
Applied Thermal Engineering
88
:
165
171
(
2015
).
40.
D.A.
Stewart
,
H.P.
Dudel
and
L.J.
Levitt
Solar Radiation in Saudi Arabia
.
ARMY MISSILE COMMAND REDSTONE ARSENAL AL WEAPONS SCIENCE DIRECTORATE
(
1993
).
41.
S.
Farahat
,
F.
Sarhaddi
,
H.
Ajam
Exergetic optimization of flat plate solar collectors
.
Renewable energy
34
:
1169
1174
(
2009
).
42.
A.M.
Hussein
,
K.
Kadirgamma
,
M.M.
Noor
and
L.K.
Aik
Palm oil based nanofluids for enhancing heat transfer and rheological properties
.
Heat and Mass Transfer
54
:
3163
3169
(
2018
).
43.
K.A.
Mohammed
,
A.F.
Hameed
and
A.M.
Hussein
Nanofluid heat transfer augmentation in a double pipe heat exchanger.
In:
AIP Conference Proceedings. AIP Publishing LLC
,
2213
(
1
):
20059
(
2020
).
44.
M.S.
Kamel
,
F.
Lezsovits
,
A.M.
Hussein
,
O.
Mahian
and
S.
Wongwises
Latest developments in boiling critical heat flux using nanofluids: A concise review
.
International Communications in Heat and Mass Transfer
98
:
59
66
(
2018
).
45.
M.B.
Nejad
,
H.A.
Mohammed
,
O.
Sadeghi
and
S.A.
Zubeer
Influence of nanofluids on the efficiency of Flat-Plate Solar Collectors (FPSC)
. In:
E3S Web of Conferences. EDP Sciences
, p
123
(
2017
).
46.
S.R.
Shamshirgaran
,
M.K.
Assadi
,
H.H.
Al-Kayiem
and
K.V.
Sharma
Investigation of thermal behaviour, pressure drop, and pumping power in a Cu nanofluid-filled solar flat-plate collector
.
MATEC Web of Conferences
131
:
1
6
(
2017
).
47.
H.P.
Garg
and
R.K.
Agarwal
Some aspects of a PV/T collector/forced circulation flat plate solar water heater with solar cells
.
Energy Conversion and Management
36
:
87
99
(
1994
).
48.
W.S.
Saric
,
H.L.
Reed
and
E.B.
White
Stability and transition of three-dimensional boundary layers
.
Annual Review of Fluid Mechanics
35
:
413
440
(
2003
).
49.
F.M.
White
Advanced Fluid Dynamics
.
McGraw-Hill Book Company Inc
.,
New York
, pp.
135
136
(
1991
).
50.
N.A.C.
Sidik
,
H.A.
Mohammed
,
O.A.
Alawi
,
S.
Samion
A review on preparation methods and challenges of nanofluids.
International Communications in Heat and Mass Transfer
54
:
115
125
(
2014
).
51.
A.F.
Niwalkar
,
J.M.
Kshirsagar
, K.
Kulkarni Experimental investigation of heat transfer enhancement in shell and helically coiled tube heat exchanger using SiO2/ water nanofluids
.
Materials Today: Proceedings
18
:
947
962
(
2019
).
52.
O.
Mahian
,
A.
Kianifar
,
A.Z.
Sahin
,
S.
Wongwises
Heat transfer, pressure drop, and entropy generation in a solar collector using SiO2/water nanofluids: effects of nanoparticle size and pH
.
Journal of Heat Transfer
137
:
61011
(
2015
).
53.
A.A.R.
Darzi
,
M.
Farhadi
,
K.
Sedighi
,
R.
Shafaghat
and
K.
Zabihi
Experimental investigation of turbulent heat transfer and flow characteristics of SiO2/water nanofluid within helically corrugated tubes
.
InternationalCommunications in Heat and Mass Transfer
39
:
1425
1434
(
2012
).
54.
H.
Maddah
,
M.
Alizadeh
,
N.
Ghasemi
,
S.R.W.
Alwi
Experimental study of A2O3/water nanofluid turbulent heat transfer enhancement in the horizontal double pipes fitted with modified twisted tapes.
International Journal of Heat and Mass Transfer
78
:
1042
1054
(
2014
).
55.
J.
Albadr
,
S.
Tayal
and
M.
Alasadi
Heat transfer through heat exchanger using Al2O3 nanofluid at different concentrations
.
Case Studies in Thermal Engineering
1
:
38
44
(
2013
).
56.
S.
Arockiaraj
and
P.
Jidhesh
Effect of nano fluids in solar flat plate collector systems
.
Int J Eng Comput Sci
5
:
18404
18412
(
2016
).
57.
W.
Chen
,
C.
Zou
and
X.
Li
An investigation into the thermophysical and optical properties of SiC/ionic liquid nanofluid for direct absorption solar collector.
Solar Energy Materials and Solar Cells
163
:
157
163
(
2017
).
58.
K.Y.
Leong
,
K.Z.K
Ahmad
,
H.C.
Ong
,
M.J.
Ghazali
and
A.
Baharum
Synthesis and thermal conductivity characteristic of hybrid nanofluids–a review
.
Renewable and Sustainable Energy Reviews
75
:
868
878
(
2017
).
59.
A.H.
Elsheikh
,
S.W.
Sharshir
,
M.E
Mostafa
,
F.A.
Essa
and
M.K.A.
Ali
Applications of nanofluids in solar energy: A review of recent advances.
Renewable and Sustainable Energy Reviews
82
:
3483
3502
(
2018
).
60.
M.
Mehrali
,
E.
Sadeghinezhad
,
M.A.
Rosen
,
S.T.
Latibari
,
M.
Mehrali
,
H.S.C.
Metselaar
and
S.N.
Kazi
Effect of specific surface area on convective heat transfer of graphene nanoplatelet aqueous nanofluids.
Experimental Thermal and Fluid Science
68
:
100
108
(
2015
).
61.
Z.
Said
,
M.A.
Sabiha
,
R.
Saidur
,
A.
Hepbasli
,
N.A.
Rahim
,
S.
Mekhilef
and
T.A.
Ward
Performance enhancement of a flat plate solar collector using titanium dioxide nanofluid and polyethylene glycol dispersant.
Journal of Cleaner Production
92
:
343
353
(
2015
).
62.
Z.
Said
,
M.H.
Sajid
,
M.A.
Alim
,
R.
Saidur
and
N.A.
Rahim
Experimental investigation of the thermophysical properties of AL2O3-nanofluid and its effect on a flat plate solar collector.
International Communications in Heat and Mass Transfer
48
:
99
107
(
2013
).
63.
L.S.
Sundar
,
M.K.
Singh
,
V.
Punnaiah
and
A.C.M.
Sousa
Experimental investigation of Al2O3/water nanofluids on the effectiveness of solar flat-plate collectors with and without twisted tape inserts.
Renewable energy
119
:
820
833
(
2018
).
This content is only available via PDF.
You do not currently have access to this content.