A nonparametric method using the trimmed mean is proposed to estimate the slope parameter of the replicated linear functional relationship model (LFRM). This study considers the replicated LFRM when the error terms are not assumed to have a normal distribution. The maximum likelihood estimation method requires the assumption of normality and may lead to errors when outliers are present in the data. The performance of the proposed method is compared with the maximum likelihood estimation method in terms of estimated bias and mean square error. Results simulation study highlighted that the proposed method provides a better estimate of the slope parameter in the presence of outliers as compared to the maximum likelihood estimation method.

1.
W. A.
Fuller
,
Measurement Error Models
.
John Wiley & Sons
,
1987
.
2.
Y.
Hu
and
T.
Wansbeek
, “
Measurement Error Models: Editors’ Introduction
,”
J. Econom.
, vol.
200
, no.
2
, pp.
151
153
,
2017
.
3.
D. V.
Lindley
, “
Estimation of a Functional Relationship
,”
Biometrika
, vol.
40
, no.
1/2
, pp.
47
49
,
1953
.
4.
M. G.
Kendall
and
A.
Stuart
,
The Advanced Theory of Statistics. Vol 2: Inference and Relationship
, 4th ed., vol.
2
.
London
:
Griffin
,
1979
.
5.
A. G.
Hussin
,
N.
Fieller
, and
E.
Stillman
, “
Pseudo-replicates in the Linear Circular Functional Relationship Model
,”
J. Appl. Sci.
, vol.
5
, no.
1
, pp.
138
143
,
2005
.
6.
M.
Dorff
and
J.
Gurland
, “
Estimation of the Parameters of a Linear Functional Relation
,”
J. R. Stat. Soc. Ser. B
, vol.
23
, no.
1
, pp.
160
170
,
1961
.
7.
W. M.
Patefield
, “
Information from the Maximized Likelihood Function
,”
Biometrika
, vol.
72
, no.
3
, pp.
664
668
,
1985
.
8.
A. A.
Ghapor
,
Y. Z.
Zubairi
,
A. S. M.
Al Mamun
, and
A. H. M. R.
Imon
, “
A Robust Nonparametric Slope Estimation in Linear Functional Relationship Model
,”
Pak. J. Stat.
, vol.
31
, no.
3
, pp.
339
350
,
2015
.
9.
A. D.
Al-Nasser
and
M. A. H.
Ebrahem
, “
A New Nonparametric Method for Estimating the Slope of Simple Linear Measurement Error Model in the Presence of Outliers
,”
Pak. J. Stat.
, vol.
21
, no.
3
, pp.
265
274
,
2005
.
10.
A. S. M.
Al Mamun
,
A. G.
Hussin
,
Y. Z.
Zubairi
, and
A. H. M. R.
Imon
, “
A nonparametric robust estimator for slope of linear structural relationship model
,”
Pak. J. Stat.
, vol.
28
, no.
3
, pp.
385
394
,
2012
.
11.
A. Mohd
Arif
,
Y. Z.
Zubairi
, and
A. G.
Hussin
, “
Nonparametric Estimation for a Slope of a Replicated Linear Functional Relationship Model
,”
ASM Sci. J.
, vol.
13
, pp.
1
5
,
2020
.
12.
R. R.
Wilcox
, “
Trimmed Means
,”
Encycl. Stat. Behav. Sci.
, vol.
4
, pp.
2066
2067
,
2005
.
13.
V. D.
Barnett
, “
Fitting Straight Lines-The Linear Functional Relationship with Replicated Observations
,”
Appl. Stat.
, vol.
19
, no.
2
, pp.
135
144
,
1970
.
14.
A. G.
Hussin
, “
Approximating Fisher’s Information for the Replicated Linear Circular Functional Relationship Model
,”
Bull. Malaysian Math. Sci. Soc.
, vol.
28
, no.
2
, pp.
131
139
,
2005
.
15.
A. Mohd
Arif
,
Y. Z.
Zubairi
, and
A. G.
Hussin
, “
Maximum Likelihood Estimation of Replicated Linear Functional Relationship Model
,” vol.
10
, no.
1
, pp.
301
308
,
2021
.
This content is only available via PDF.
You do not currently have access to this content.