The conjugate gradient approach for solving unconstrained optimization is gaining popularity among researchers due to its capacity to solve large-scale unconstrained optimization problems. The method is used for finding an optimum solution for nonlinear unconstrained optimization problems. Due to the upward trending in the conjugate gradient methods research, this research carried out a new spectral conjugate gradient method by combining the benefits of spectral conjugate gradient method and classical conjugate gradient methods. The Sri-Mustafa-2 (SM-2) method is combined with spectral conjugate gradient method namely as modified SM-2 or abbreviated as MSM-2. Theoretically, the proposed method needs to satisfy sufficient descent condition and global convergence properties. The MSM-2 method is then tested with 15 standard optimization test problems to retrieve the numerical result through MATLAB 2016b. The efficiency of the proposed method in terms of iteration number and CPU time is compared with other selected spectral CG method such as modified HS (MHS) and modified RMIL (MRMIL). Determine from numerical results, the MSM-2 is superior and most efficient method to solve unconstrained optimization problems than other selected spectral CG methods.

1.
Hestenes
,
M. R.
, &
Stiefel
,
E.
(
1952
). Methods of conjugate gradients for solving linear systems (Vol.
49
, No.
1
).
Washington, DC
:
NBS
.
2.
Rivaie
,
M.
,
Mamat
,
M.
,
June
,
L. W.
, &
Mohd
,
I.
(
2012
).
A new class of nonlinear conjugate gradient coefficients with global convergence properties
.
Applied Mathematics and Computation
,
218
(
22
),
11323
11332
.
3.
N. A.
Japri
,
S.
Basri
, and
M.
Mamat
, “
New modification of the Hestenes-Stiefel with strong Wolfe line search
” in
AIP Conference Proceedings
2355
, No.
1
, p.
040003
, (
AIP Publishing LLC
,
2021
).
4.
E. G.
Birgin
and
J. M.
Martinez
,
J. Appl. Maths. Optim.
43
,
117
128
(
2001
).
5.
L.
Zhang
,
W.
Zhou
, and
D.
Li
,
Numer. Math.
104
,
561
572
(
2006
).
6.
W.
Khadijah
,
M.
Rivaie
,
M.
Mamat
, and
I.
Jusoh
, “
A spectral KRMI conjugate gradient method under the strong-Wolfe line search
” in
AIP Conference Proceedings
1739
, No.
1
, p.
020072
, (
AIP Publishing LLC
,
2016
).
7.
A. M.
Awwal
,
I. M.
Sulaiman
,
M.
Malik
,
M.
Mamat
,
P.
Kumam
, and
K.
Sitthithakerngkiet
,
IEEE Access
9
,
75398
75414
(
2021
).
8.
S.
Aji
,
P.
Kumam
,
A. M.
Awwal
,
M. M.
Yahaya
and
K.
Sitthithakerngkiet
,
AIMS Mathematics
6
(
8
),
8078
8106
(
2021
).
9.
S. M.
Ibrahim
,
U. A.
Yakubu
and
M.
Mamat
,
IJOCTA
10
(
2
),
198
205
(
2020
).
10.
G.
Zoutendijk
, “Nonlinear Programming Computational Methods,” in
Integer and Nonlinear Programming
, by
J.
Abadie
(Ed.) (
North Holland, Amsterdam
,
1970
), pp.
37
86
.
11.
Andrei
N.
,
Adv. Model. Optim
,
10
(
1
),
147
161
(
2008
).
12.
E.
Dolan
and
J. J.
More
,
Maths. Prog.
91
,
201
213
(
2002
).
This content is only available via PDF.
You do not currently have access to this content.