For the uncertainty data problem, traditional methods are incapable of handling them that caused inaccuracy in data analysis and prediction. Uncertainty data often occurs during the data collection phase and cannot be used to generate geometric models directly. Therefore, this paper discusses the B-Spline curve interpolation modeling using intuitionistic alpha cut for the uncertainty data. Fuzzy set theory, intuitionistic fuzzy set, and geometry modeling are used and integrated with one each other to solve the data with uncertainty and generate the mathematical model. In detail, there are three main processes employed, the first of which is the fuzzy set theory applied to defined uncertainty data followed by the intuitionistic fuzzy set, which is used to consider the membership and non-membership values of the alpha before proceeding to the fuzzification and defuzzification process. Next, geometric modeling is utilised to construct mathematical geometry in the form of curves, which is the B-spline curve interpolation function. As a result, various numerical examples, as well as their algorithms for generating the desired curve, are shown.

1.
L.
Hu
and
W.
Zhang
,
Computer-Aided Design
127
,
102885
(
2020
).
2.
M. I. E.
Zulkifly
,
A. F.
Wahab
, and
R.
Zakaria
,
IAENG Journal of Applied Mathematics
50
, (
2020
).
3.
N. A. A
Karim
,
A. F.
Wahab
,
R. U.
Gobithaasan
, and
R.
Zakaria
,
Far East Journal of Mathematical Sciences
72
,
269
280
(
2013
).
4.
M.
Zamani
,
Contemporary Engineering Sciences
2
, (
2009
).
5.
A. F.
Wahab
, “
Pemodelan Geometri Menggunakan Teori Set Kabur [Geometric Modelling using Fuzzy SetTheory]
,” Ph.D. thesis,
Universiti Sains Malaysia
2008
.
6.
L. A.
Zadeh
,
Information and Control
8
,
338
(
1965
).
7.
R.
Zakaria
,
A.F.
Wahab
,
I.
Ismail
, and
M.I.
Zulkifly
,
Mathematics
9
,
1054
(
2021
).
8.
S.P.
Panda
,
2016 IEEE Students’ Conference on Electrical, Electronics and Computer Science (SCEECS)(2016)
.
9.
N.
Werro
,
Fuzzy Management Methods
(
2015
).
10.
R.
Zakaria
and
A. F.
Wahab
,
Applied Mathematical Sciences
7
,
2229
(
2013
).
11.
D.
Solomon
,
Curves and Surfaces for Computer Graphics
(
2006
).
12.
M. S.
Husain
,
A. F.
Wahab
, and
R. U.
Gobithasaan
,
Malaysian Journal of Fundamental and Applied Sciences
11
, (
2015
).
13.
A. F.
Wahab
and
M. I. E.
Zulkifly
,
Malaysian Journal of Fundamental and Applied Sciences
11
, (
2015
).
14.
K. T.
Atanassov
,
Fuzzy Sets and Systems
20
,
87
(
1986
).
15.
K. T.
Atanassov
and
G.
Gargov
,
Fuzzy Sets and Systems
31
,
343
(
1989
).
16.
M.I.
Zulkifly
and
A.F.
Wahab
,
AIP Conference Proceedings
(
2018
).
17.
T.
Ciftcibasi
and
D.
Altunay
,
IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans
28
,
662
(
1998
).
18.
A. F.
Wahab
,
J. M.
Ali
, and
A. A.
Majid
, “
Fuzzy Geometric Modeling
,” in
Proceeding of the 2009 6th International Conference on Computer Graphics, Imaging and Visualization: New Advances and Trends, CGIV 2019
, (
2019
).
19.
M. C. J.
Anand
and
J.
Bharatraj
Theory of Triangular Fuzzy Number
,” in
Proceeding of NCATM
, (
2017
).
20.
R.
Zakaria
,
N.A.
Suhaimi
,
A. N.
Jifrin
, and
S. N.
Jaman
,
Seminar of Science and Technology
,
233
236
(
2021
).
21.
R.
Elaiyaperumal
,
P.
Gajivaradhan
, and
M.
Suguna
,
The International Journal of Analysis and ExperimentalModal Analysis
11
,
3282
3288
(
2019
).
22.
R.
Zakaria
,
A. F.
Wahab
, and
R. U.
Gobithaasan
,
Journal of Applied Mathematics
2014
,
285045
(
2014
).
23.
Z.
Şen
, “FIS: Fuzzy Inferences System,” in
Fuzzy Logic and Hydrological Modeling
(
CRC Press
,
2017
), pp.
195
209
.
24.
A.W.
Brown
,
K.A.
Kaiser
, and
D.B.
Allison
, “
Issues with Data and Analyses: Error, Underlying Themes, and Potential Solutions
,” in
Proceedings of the National Academy of Sciences
115
,
2563
2570
(
2018
).
This content is only available via PDF.
You do not currently have access to this content.