In general, the application of fuzzy sets in geometric modeling contributes to many areas such as data analysis and prediction. Hence, this study proposed an application of type-2 intuitionistic fuzzy set (T2IFS) in geometric modeling onto complex uncertainty data in which the data are defined using the type-2 fuzzy concept or in other words, there is uncertainty in uncertainty data. T2IFSs are the generalized forms of fuzzy sets, intuitionistic fuzzy sets, interval-valued fuzzy sets, and interval-valued intuitionistic fuzzy sets. Based on the notion of T2IFS, type-2 intuitionistic fuzzy point (T2IFP) is defined to produce a type-2 intuitionistic fuzzy control point (T2IFCP). Then, the T2IFCP will be blended with the Bernstein blending function, resulting in a type-2 intuitionistic interpolation fuzzy Bézier curve, through the interpolation method. Numerical examples and algorithms to generate the curve will be further shown in this paper.

1.
Tas
F.
,
Topal S.
Bézier
Curve Modeling for Neutrosophic Data Problem
.
NSS.
2017
;
16
:
3
5
.
2.
Szmidt
E.
Uncertainty and Information: Foundations of Generalized Information Theory
(
Klir
,
G.J.
;
2006
).
IEEE Transactions on Neural Networks.
2007;
18
(
5
):
1551
1551
.
3.
Zadeh
L.A.
Fuzzy sets. Information and Control.
1965
;
8
(
3
):
338
353
.
4.
Zadeh
L.A.
Fuzzy logic and approximate reasoning. Synthese.
1975
;
30
(
3
):
407
428
.
5.
Mendel
J.
Type 2 Fuzzy Sets and Systems: An Overview [corrected reprint]
.
IEEE Computational Intelligence Magazine.
2007
;
2
(
2
):
20
29
.
6.
Atanassov
K.T.
Intuitionistic fuzzy sets
.
Fuzzy Sets and Systems.
1986
;
20
(
1
):
87
96
.
7.
Cuong
B.C.
,
Anh
T.H.
,
Hai
B.D.
Some operations on type-2 intuitionistic fuzzy sets
.
Journal of Computer Science and Cybernetics.
2012
;
28
(
3
):
274
283
.
8.
Bakali
A.
,
Broumi
S.
,
Nagarajan
D.
,
Talea
M.
,
Lathamaheswari
M.
,
Kavikumar
J.
Graphical Representation of Type-2 Neutrosophic sets
.
NSS.
2021
;
42
:
28
38
.
9.
Zakaria
R.
,
Wahab
A.F.
,
Gobithaasan
R.U.
Normal type-2 Fuzzy Rational B-Spline Curve.
2013
.
10.
Zakaria
R.
,
Wahab
A.F.
,
Gobithaasan
R.U.
Normal type-2 fuzzy interpolating B-spline curve
.
AIP Conference Proceedings.
2015
;
1605
(
1
):
476
.
11.
Zakaria
R.
,
Wahab
A.F.
,
Gobithaasan
R.U.
The Series of Fuzzified Fuzzy Bézier Curve
.
Jurnal Teknologi.
2015
;
78
(
2-2
).
12.
Zakaria
R.
,
Wahab
A.F.
,
Gobithaasan
R.U.
Fuzzy B-spline surface modeling
.
Journal of Applied Mathematics.
2014
.
13.
Zakaria
R.
,
Wahab
A.F.
,
Ismail
I.
,
Zulkifly
M.I.E.
Complex Uncertainty of Surface Data Modeling via the Type-2 Fuzzy B-Spline Model
.
Mathematics.
2021
;
9
(
9
):
1054
.
14.
Wahab
A.F.
,
Ali
J.M.
,
Majid
A.A.
Fuzzy geometric modeling
.
In: Proceedings of the 2009 6th International Conference on Computer Graphics, Imaging and Visualization: New Advances and Trends, CGIV2009.
2009
. p.
276
280
.
15.
Wahab
A.F.
,
Zulkifly
M.I.E.
Intuitionistic fuzzy in spline curve/surface
.
Malaysian Journal of Fundamental and Applied Sciences.
2015
;
11
(
1
).
16.
Wahab
A.F.
,
Zulkifly
M.I.E.
A new fuzzy Bézier curve modeling by using fuzzy control point relation
.
Applied Mathematical Sciences.
2017
;
11
:
39
57
.
17.
Wahab
A.F.
,
Zulkifly
M.I.E.
,
Ismail
N.B.
Fuzzy Bézier curve interpolation modeling by using fuzzy control point relation
.
Advances and Applications in Discrete Mathematics.
2019
;
21
(
1
):
1
23
.
18.
Tolga
A.C.
Real options valuation of an IoT based healthcare device with interval Type-2 fuzzy numbers
.
Socio-Economic Planning Sciences.
2020
;
69
.
19.
Singh
S.
,
Garg
H.
Distance measures between type-2 intuitionistic fuzzy sets and their application to multicriteria decision-making process
.
Applied Intelligence.
2016
;
46
(
4
):
788
799
.
20.
Roy
S.K.
,
Bhaumik
A.
Intelligent Water Management: a Triangular Type-2 Intuitionistic Fuzzy Matrix Games Approach
.
Water Resources Management.
2017
;
32
(
3
):
949
968
.
21.
Chaira
T.
Fuzzy set and its extension: The intuitionistic fuzzy set
.
Hoboken, NJ
:
Wiley-Blackwell
;
2019
.
22.
Wahab
A.F.
,
Zulkifly
M.I.E.
,
Husain
M.S.
Bézier curve modeling for intuitionistic fuzzy data problem
.
In: AIP conference proceedings.
2016
;
1750
.
23.
Zakaria
R.
,
Wahab
A.F.
,
Gobithaasan
R.U.
Type-2 fuzzy Bézier curve modeling
.
AIP Conference Proceedings.
2013
;
1522
:
945
952
.
This content is only available via PDF.
You do not currently have access to this content.