Magnesium based cement known for over than 150 years is a clinker-free binder with low environmental impact which is in contrast with widely used Portland cement. Its main advantage is fast setting, durability and high early strength accompanied by a strongly exothermic reaction, which makes the material applicable also at temperatures below zero. On the other hand, fast setting connected with workability restricts the material use on large-scale structures. Therefore it finds use in restoration works, repair of streets and pavements or retrofitting. Moreover, the high durability and chemical inertness allow apply material for encapsulation of hazardous waste. Nowadays effort to reduce the energy consumption of building stocks resulted in a design of new thermal insulation materials. The way how to scale up thermal insulation ability is to use alternative, highly porous aggregates as a replacement of commonly used silica sand. In this study, MKPC (magnesium potassium phosphate cement) was mixed with expanded glass granulate and waste tire rubber. For the hardened composites, structural and thermal properties were experimentally assessed. The results pointed to the considerable decrease in thermal conductivity when using lightweight filler. Additionally, thermal characteristics were observed for 50% and 100% water saturated samples. The obtained data evinced greatly reduced thermal insulation ability due to the moisture presence.

1.
C. Y.
Zhang
,
B.
Yu
,
J. M.
Chen
,
Y. M.
Wei
,
Green transition pathways for cement industry in China
,
Resour. Conserv. Recycl.
166
,
105355
(
2021
).
2.
Technology Roadmap: Low-Carbon Transition in the Cement Industry (
2021
)
3.
Climate Transparency Report 2021: Comparing G20 Climate Action Towards Net Zero. November (
2021
)
4.
S.
Zhou
,
C.
Ma
,
G.
Long
,
Y.
Xie
,
Constr. Build. Mater. 238, 117671 (2020), Constr. Build. Mater.
238
,
117671
(
2020
).
5.
K.
Scrivener
,
F.
Martirena
,
S.
Bishnoi
,
S.
Maity
,
Calcined clay limestone cements (LC3
),
Cem. Concr. Res.
114
,
49
56
(
2018
).
6.
R.
Zhang
,
A.
Arrigoni
,
D. K.
Panesar
,
Effect of Iron Phase on the Formation of Barium Calcium Sulphoaluminate Clinker
,
Cem. Concr. Compos.
124
,
104263
, (
2021
).
7.
S. A.
Walling
,
J. L.
Provis
,
Magnesia-Based Cements: A Journey of 150 Years, and Cements for the Future?
,
Chem. Rev.
116
,
4170
4204
, (
2016
).
8.
Y.
Tao
,
L.
Zhenyu
,
H.
Zhichao
,
R.
Chunrong
,
W.
Yuanyuan
,
H.
Xin
,
W.
Jie
,
L.
Mengliang
,
D.
Qiubai
,
K.
Khan
,
L.
Zhongyuan
,
L.
Shuzhen
,
L.
Feng
,
F.
Xiaoling
,
Mechanical and microstructure of magnesium potassium phosphate cement with a high concentration of Ni(II) and its leaching toxicity
,
Constr. Build. Mater.
245
,
118425
(
2020
).
9.
L.
Chong
,
J.
Yang
,
C.
Shi
,
Effect of curing regime on water resistance of magnesium–potassium phosphate cement
,
Constr. Build. Mater.
151
,
43
51
(
2017
).
10.
B.
Xu
,
F.
Winnefeld
,
J.
Kaufmann
,
B.
Lothenbach
,
Influence of magnesium-to-phosphate ratio and water-to-cement ratio on hydration and properties of magnesium potassium phosphate cements
,
Cem. Concr. Res.
123
,
105781
(
2019
).
11.
Š.
Marušiak
,
A.
Kapicová
,
A.
Pivák
,
M.
Pavlíková
,
Z.
Pavlík
,
Magnesium Potassium Phosphate Cement-Based Derivatives for Construction Use: Experimental Assessment
,
Materials
15
(
5
),
1896
(
2022
).
12.
L.
Yue
,
S.
Jia
,
Ch.
Bing
,
Constr. Build. Mater.
65
,
177
183
(
2014
).
13.
N.
José
,
H.
Ahmed
,
B.
Miguel
,
E.
Luis
,
B.
Jorge
,
Magnesia (MgO) Production and Characterization, and Its Influence on the Performance of Cementitious Materials: A Review
,
Materials.
13
,
4752
(
2020
).
14.
H.
Lahalle
,
C. C. D.
Coumes
,
C.
Mercier
,
D.
Lambertin
,
C.
Cannes
,
S.
Delpech
,
Gauffinet
,
Influence of the w/c ratio on the hydration process of a magnesium phosphate cement and on its retardation by boric acid
,
S. Cem. Concr. Res.
109
,
159
174
(
2018
).
15.
Q.
Yang
,
X.
Wu
,
Factors influencing properties of phosphate cement-based binder for rapid repair of concrete
,
Cem. Concr. Res.
29
,
389
396
(
1999
).
16.
A. S.
Wagh
,
R.
Strain
,
S. Y.
Jeong
,
D.
Reed
,
T.
Krause
,
D.
Singh
,
High strength phosphate cement using industrial byproduct ashes
,
MATEC Web Conf.
265
,
295
307
(
1999
).
17.
I.
Buj
,
J.
Torras
,
D.
Casellas
,
M.
Rovira
,
Pablo, Effect of heavy metals and water content on the strength of magnesium phosphate cements
,
J. Hazard Mater.
170
,
345
3
(
2009
).
18.
J.
Yang
,
Qian
,
C. J.
Wuhan
,
Effect of borax on hydration and hardening properties of magnesium and pottassium phosphate cement pastes
,
Univ. Technol. Mater. Sci.
Ed.
25
,
613
618
(
2010
).
19.
L. D. H.
Anh
,
Z. J.
Pásztory
,
An overview of factors influencing thermal conductivity of building insulation materials
,
Build. Eng.
,
44
,
102604
, (
2021
).
20.
EN 1015-3, Methods of test for mortar for masonry – Part 3: Determination of consistence of fresh mortar (by flow table), European Committee for Standardization (CEN),
2000
.
21.
EN 1015-10, Methods of test for mortar for masonry – Part 10: Determination of dry bulk density of hardened mortar, European Committee for Standardization (CEN),
2000
.
22.
O.
Jankovsky
,
M.
Pavlikova
,
D.
Sedmidubsky
,
D.
Bousa
,
M.
Lojka
,
J.
Pokorný
,
M.
Záleská
,
Z.
Pavlík
,
Study on Pozzolana Activity of Wheat Straw Ash as Potential Admixture for Blended Cements
,
Ceramics-Silikáty
61
,
327
339
(
2017
).
This content is only available via PDF.
You do not currently have access to this content.