Stormwater management is an integral part of the new concept of wastewater disposal from urbanized areas, which includes all system units into a comprehensive, integrated system. This concept, based on sustainable principles, brings environmental and socio-economic benefits. The integrated stormwater management system facilities reduce the load on wastewater treatment plants and receiving water bodies while contributing to the restoration of local ecosystems. In this context, the paper focuses on the possibilities of using life cycle analysis to design specific integrated systems. The aim is to summarize the life cycle assessment studies of stormwater management facilities so that they can be applied in the future as a basis for the design of efficient and sustainable drainage systems in urban areas.

1.
D.
Niyogi
,
M.
Lei
,
C.
Kishtawal
,
P.
Schmid
,
M.
Shepherd
,
Urbanization impacts on the summer heavy rainfall climatology over the eastern United States
, in
Earth Interactions
21
,
5
, pp.
1
17
, (
2017
).
2.
Public Sewerage Development Plan for the territory of the Slovak Republic for the years 2021 – 2027 (in Slovak language
),
The Ministry of the Environment of the Slovak Republic
, (December
2019
)
3.
H.
Jeong
,
O. A.
Broesicke
,
B.
Drew
,
D.
Li
,
J. C.
Crittenden
,
Life cycle assessment of low impact development technologies combined with conventional centralized water
, in
Front. Environ. Sci. Eng.
,
10
(
6
) :
01
, (
2016
) systems for the City of Atlanta, Georgia
4.
L. M
Ahiablame
,
B. A.
Engel
,
I.
Chaubey
,
Effectiveness of low impact development practices in two urbanized watersheds: Retrofitting with rain barrel/cistern and porous pavement
, in
Journal of Environmental Management
119
, pp.
151
161
, (
2013
)
5.
T. D.
Fletcher
et al,
SUDS, LID, BMPs, W. SUD and more – The evolution and application of terminology surrounding urban drainage
, in
Urban Water Journal
12
,
7
, pp.
525
542
(
2015
).
6.
R. R.
BROWN
,
N.
KEATH
,
T. H. F.
WONG
,
Urban water management in cities: historical, current and future regimes
, in
Water Science and Technology
59
,
5
, pp.
847
855
(
2009
).
7.
B. Woods
Ballard
,
S.
Wilson
,
H.
Udale-Clarke
,
T.
Scott
,
R.
Ashley
,
R.
Kellagher
,
The SuDS Manual. Version 5 [online]
.
London
:
CIRIA
,
2015
. © CIRIA 2015.
964
p. ISBN: 978-0-86017-760-9. [cit. 24. 02. 2021]. Available from: http://www.scotsnet.org.uk/documents/nrdg/ciria-report-c753-the-suds-manual-v6.pdf.
8.
V.
Kočí
,
Posudzovaní životného cyklu, Life cycle assessment – LCA. (Vodní zdroje Ekomonitor spol. s. r. o, Chrudim
)
2009
. 978-80-86832-42-5.
9.
S. O.
Ajayi
,
L. O.
Oyedele
,
B.
Ceranic
,
M.
Gallanagh
,
K. O.
Kadiri
,
Life cycle environmental performance of material specification: a BIM-enhanced comparative assessment
, in
Int. J. Sustain. Build. Technol. Urban Dev.
6
, pp.
14
24
(
2015
).
10.
R.
Phillips
,
H.K.
Jeswani
,
A.
Azapagic
,
D.
Apul
,
Are stormwater pollution impacts significant in life cycle assessment? A new methodology for quantifying embedded urban stormwater impacts
, in
Sci. Total Environ.
636
, pp.
115
123
(
2018
).
11.
A.
Dixon
,
M.
Simon
,
T.
Burkitt
,
Assessing the environmental impact of two options for smallscale wastewater treatment: comparing a reedbed and an aerated biological filter using a life cycle approach
, in
Ecol. Eng.
20
(
4
), pp.
297
308
(
2003
).
12.
J.
Vítek
,
D.
Stranský
,
I.
Kabelková
,
V.
Bareš
,
R.
Vítek
, “Hospodaření s dažďovou vodou v ČR.” (
Praha, ČR
) ISBN: 978-80-260-7815-9. (
2015
)
13.
A.
Fathollahi
,
S. J.
Coupe
,
Life cycle assessment (LCA) and life cycle costing (LCC) of road drainage systems for sustainability evaluation: Quantifying the contribution of different life cycle phases
, in
Science of the Total Environment
776
,
145937
, (
2021
).
14.
F.
Ahammed
,
G. A.
Hewa
,
J. R.
Argue
,
Applying multi-criteria decision analysis to select WSUD and LID technologies
, in
Water Science & Technology: Water Supply
12
(
6
):
844
853
(
2012
).
15.
D. B.
Stephens
,
M.
Miller
,
S. J.
Moore
,
T.
Umstot
,
D. J.
Salvato
,
Decentralized groundwater recharge systems using roofwater and stormwater runoff
, in
Journal of the American Water Resources Association
48
(
1
):
134
135
, (
2012
).
16.
A.
Bhatt
,
A.
Bradford
,
B. E.
Abbassi
,
Cradle-to-grave life cycle assessment (LCA) of low-impact-development (LID) technologies in southern Ontario
, in
Journal of Environmental Management
231
, pp.
98
109
(
2019
).
17.
T.
Pajula
,
K.
Behm
,
S.
Vatanen
,
E.
Saarivuori
,
Managing the life cycle to reduce environmental impacts
, in
Dynamics of Long-Life Assets: From Technology Adaptation to Upgrading the Business Model.
(
2017
) .
18.
S.
Brudler
,
K.
Arnbjerg-Nielsen
,
M. Z.
Hauschild
,
M.
Rygaard
,
Life cycle assessment of stormwater management in the context of climate change adaptation
, in
Water Res.
106
, pp.
394
404
(
2016
).
19.
S.
Spatari
,
Z.
Yu
,
F. A.
Montalto
,
Life cycle implications of urban green infrastructure
, in
Environmental Pollution
,
159
, pp.
2174
2179
(
2011
).
20.
M. F.
Nóbrega dos Santos
,
A. P.
Barbassa
,
A. F.
Vasconcelos
,
A. R.
Ometto
,
Stormwater management for highly urbanized areas in the tropics: Life cycle assessment of low impact development practices
, in
Journal of Hydrology
598
,
126409
, (
2021
).
This content is only available via PDF.
You do not currently have access to this content.