A common problem in the field of image processing is recovering a geometrical distortion such as scaling, rotation, translation, shearing, and others. These types of distortions can be described by a general affine transform. In this work, the problem of recovering a transformation applied on a reference image f is considered. A review on the most known methods for recovering a general linear transformation, or a distortion from an inspected image g and a reference image f, is conducted. A new efficient estimation method without using a prior knowledge or assumptions is proposed. The proposed algorithms use the moments of the Radon projections of f and g. In some cases, our proposed algorithm needs only two orthogonal projections such as the view angles 0, and π/2. Mathematical formulations are given for recovering the transformation of shifting, scaling, rotation, and general reflection.

1.
F.
Hjouj
and
MS.
Jouini
, “On the Radon transform and linear transformations of images,”
DMIP '19: Proceedings of the 2019 2nd International Conference on Digital Medicine and Image Processing, 2019
, (
Association for Computing Machinery
,
NY
,
2019
), pp.
26
31
.
2.
F.
Hjouj
and
MS.
Jouini
, “On Image Registration using The Radon Transform, Review-and-Improvement,”
DMIP '21: 2021 4th International Conference on Digital Medicine and Image Processing
, (
Association for Computing Machinery
,
NY
,
2021
), pp.
17
23
.
3.
Z.
Hongqing
,
M.
Liu
and
Y.
Li
,
The RST invariant digital image watermarking using Radon transforms and complex moments
(
Digital Signal Processing
,
Elsevier
20
, pp
1612
1628
(
2010
)
4.
A. S.
Raquel
and
J. M.
Tavares
. “Computer image registration techniques applied to nuclear medicine images,”
In Computational and experimental biomedical sciences: methods and applications
, (
Springer
,
Cham
,
2015
). pp.
173
191
.
5.
Zhen
,
Xin
,
H.
Chen
,
H.
Yan
,
L.
Zhou
,
L. K.
Mell
,
C. M.
Yashar
,
S.
Jiang
,
X.
Jia
,
X.
Gu
, and
L.
Cervino
.
Physics in Medicine & Biology
7
, pp
2981
(
2015
)
6.
Deguillaume
,
Frédéric
,
S. V.
Voloshynovskiy
, and
T.
Pun
,
Security and watermarking of multimedia contents IV
, (
SPIE
,
2002
), pp.
313
322
.
7.
Kim
,
H.
Shin
, and
H.
Lee
,
IEEE transactions on Circuits and Systems for Video Technology
13
,
766
775
(
2003
).
8.
Venkataramana
,
A.
, and
P. Ananth
Raj
. “
Image watermarking using Krawtchouk moments
,”
In 2007 International Conference on Computing: Theory and Applications (ICCTA'07)
, (
IEEE
,
2007
), pp.
676
680
.
9.
Kadyrov
,
Alexander
, and
M.
Petrou
.
IEEE Transactions on Pattern Analysis and Machine Intelligence
28
,
1631
1645
(
2006
).
10.
Hundt
,
Christian
, and
M.
Liśkiewicz
. “On the complexity of affine image matching,”
In Annual Symposium on Theoretical Aspects of Computer Science
, (
Springer
,
Berlin, Heidelberg
,
2007
), pp.
284
295
.
11.
S.R
Deans
,
The Radon Transform and Some of Its applications
(
John Wiley& Sons
,
New York
,
1983
).
12.
F.
Hjouj
, “
Towards tomography with random orientation
,”
DMIP '19: Proceedings of the 2019 2nd International Conference on Digital Medicine and Image Processing,2019
, (
Association for Computing Machinery
,
NY
,
2019
), pp.
49
53
13.
M. Hjouj J.
Lavee
J,
D.
Last
,
D.
Guez
,
D.
Daniels
,
S.
Sharabi
S,
B.
Rubinsky
B,
Y.
Mardor
,
Sci Rep
30
;
3
:
3088
(
2013
).
14.
M.
Tembely
,
A.
AlSumaiti
,
M.S
Jouini
, and
K.
Rahimov
,
Polymers
9
(
10
),
509
(
2017
).
15.
M. S.
Jouini
,
F.
Bouchaala
,
M. K.
Riahi
,
M.
Sassi
,
H.
Abderrahmane
and
F.
Hjouj
, in
IEEE Access
10
,
67898
(
2022
).
16.
M.S.
Jouini
,
F.
Bouchaala
,
E.
Ibrahim
,
F.
Hjouj
, “
Permeability and Porosity Upscaling Method Using Machine Learning and Digital Rock Physics
,”
Conference Proceedings, 83rd EAGE Annual Conference & Exhibition, 2022
, (
European Association of Geoscientists & Engineers
,
2022
), pp.
1
5
.
17.
H.
Arjah
,
M.
Hjouj
,
F.
Hjouj
, “Low dose brain CT, comparative study with brain post processing algorithm,”
DMIP '19: Proceedings of the 2019 2nd International Conference on Digital Medicine and Image Processing, 2019
, (
Association for Computing Machinery
,
NY
,
2019
), pp.
1
7
.
18.
T. J.
Wang
, and
T. W.
Sze
,
Pattern Recognition
34
,
2145
2154
(
2001
).
19.
M.
Judit
, and
F.
Thomas
. “
On the reconstruction of an image from its moments
,”
In Proceedings 2003 International Conference on Image Processing
(
IEEE
,
2003
), pp.
I
217
.
20.
F.
Hjouj
,
M.S
Jouini
,
Open Chemical Engineering Journal
16
(
2022
).
21.
F.
Hjouj
,
M.S.
Jouini
,
Open Chemical Engineering Journal
14
,
17
24
(
2020
).
22.
A. J.
Nor'Aini
,
M. A.
Faris
, and
N.
Haryanti
, “
Image reconstruction: A comparison between moment and non-moment-based techniques
,”
In 2011 IEEE International Conference on Computer Applications and Industrial Electronics (ICCAIE)
(
IEEE
,
2011
), pp.
361
366
.
23.
W.
Diggin
, and
M.
Diggin
, arXiv preprint arXiv 2009:09898 (
2020
),
24.
K.
Rahimov
,
A.
AlSumaiti
,
M.S
Jouini
, “Quantitative Analysis of Absolute Permeability and Porosity in Carbonate Rocks Using Digital Rock Physics,”
Paper presented at the SPWLA 22nd Formation Evaluation Symposium of Japan
,
Chiba, Japan
,
2016
.
This content is only available via PDF.
You do not currently have access to this content.