This work considers the Hausdorff moment problem and proposes a gradient descent approach as a tool to solve the linear system generated from the spline or B-spline construction. In fact, the linear system that is built from the given moments is ill-conditioned. But, with the gradient descent, the more order moment available, the more efficient minimization is obtained. Additionally, since the reconstruction should approximate a distribution, its values should be non-negative. The projected gradient descent controls the positivity of the solution. Our method is tested on different types of functions confirming the fact that using more moments reduces the efficiency of the standard linear algebra solutions, while the gradient descent minimization becomes more efficient.

1.
F.
Hjouj
,
M.S.
Jouini
,
Open Chemical Engineering Journal
14
,
17
24
(
2020
).
2.
F.
Hjouj
,
M.S
Jouini
,
Open Chemical Engineering Journal
16
(
2022
).
3.
K.
Bandyopadhyay
,
A.K.
Bhattacharya
,
P.
Biswas
,
D.A.
Drabold
,
Phys. Rev.
71
,
057701
(
2005
).
4.
V.
Joh
,
I.
Angelov
,
A.A.
Öncül
,
D.
Thevenin
,
Chem. Eng. Sci
62
,
2890
2904
(
2007
).
5.
R.M.
Mnatsakanov
,
Stat Probability Lett
78
.
1869
1877
(
2008
).
6.
H.M
Hulburt
,
S.
Katz
,
Chem. Eng. Sci
19
,
555
5741
(964).
7.
G.A.
Athanassoulis
,
P.N.
Gavriliadis
,
Probabilist Eng. Mech.
17
,
273
291
(
2002
).
8.
R.V.
Abramov
,
J. Compute. Phys.
226
,
621
644
(
2007
).
9.
R.
Abramov
,
J. Compute. Phys.
211
,
198
209
(
2006
).
10.
N.
Lebaz
,N,
A.
Cockx
,
M.
Spérandio
,
J.
Morchain
,
Computer. Chem. Eng
84
,
326
337
(
2016
).
11.
A.K.
Roy
, and
S.K.
Sharma
,
J. Opt. A: Pure Appl”, Opt
7
,
675
684
(
2005
).
12.
G.
Inglese
,
Inverse Probl
10
,
401
414
(
1994
).
13.
A
Andreychenko
,
L
Mikeev
, and
V.
Wolf
, "
Model reconstruction for moment-based stochastic chemical kinetics
",
ACM Trans Model Comput Simul
25
(
2
),
12:1
-
12:19
(
2015
).
14.
F.
Hjouj
and
MS.
Jouini
, “
On the Radon transform and linear transformations of images
,”
DMIP '19: Proceedings of the 2019 2nd International Conference on Digital Medicine and Image Processing, 2019
, (
Association for Computing Machinery
,
NY
,
2019
), pp.
26
31
.
15.
F.
Hjouj
and
MS.
Jouini
, “
On Image Registration using The Radon Transform, Review-and-Improvement
,”
DMIP '21: 2021 4th International Conference on Digital Medicine and Image Processing
, (
Association for Computing Machinery
,
NY
,
2021
), pp.
17
23
.
16.
F.
Natterer
,
The Mathematics of Computerized Tomography
(
Wiley
,
New York
1986
).
17.
F.
Natterer
,
Inverse Problems
17
,
113
119
(
2001
).
18.
L.A
Kunyansky
,
Inverse Problems
17
,
293
306
(
2001
).
19.
T.J
Wang
,
T.W.
Sze
,
Pattern Recognition
34
,
2145
2154
(
2001
).
20.
F.
Hjouj
, “
Towards tomography with random orientation
,”
DMIP '19: Proceedings of the 2019 2nd International Conference on Digital Medicine and Image Processing,2019
, (
Association for Computing Machinery
,
NY
,
2019
), pp.
49
53
.
21.
K.
Rahimov
,
A.
AlSumaiti
,
M.S
Jouini
, "Quantitative Analysis of Absolute Permeability and Porosity in Carbonate Rocks Using Digital Rock Physics,”
Paper presented at the SPWLA 22nd Formation Evaluation Symposium of Japan
,
Chiba, Japan
,
2016
22.
M. S.
Jouini
,
F.
Bouchaala
,
M. K.
Riahi
,
M.
Sassi
,
H.
Abderrahmane
and
F.
Hjouj
, in
IEEE Access
10
,
67898
(
2022
).
23.
M.S.
Jouini
,
F.
Bouchaala
,
E.
Ibrahim
,
F.
Hjouj
, “Permeability and Porosity Upscaling Method Using Machine Learning and Digital Rock Physics,”
Conference Proceedings, 83rd EAGE Annual Conference & Exhibition, 2022
, (
European Association of Geoscientists & Engineers
,
2022
), pp.
1
5
.
24.
G. T.
Herman
and
L. B.
Meyer
,
IEEE Transactions on Medical Imaging
12
(
3
),
600
609
(
1993
).
25.
S.R.
Cherry
,
J.
Sorenson
, and
M.
Phelps
,
Physics in Nuclear Medicine
, (
Saunders
,
PA
,
2003
)
26.
H.
Arjah
,
M.
Hjouj
,
F.
Hjouj
, “
Low dose brain CT, comparative study with brain post processing algorithm
,”
DMIP '19: Proceedings of the 2019 2nd International Conference on Digital Medicine and Image Processing, 2019
, (
Association for Computing Machinery
,
NY
,
2019
), pp.
1
7
.
27.
B.
Carlson
,
Journal of Approximation Theory
67
(
3
),
311
325
(
1991
).
28.
T.
Glüsenkamp
,
EPJ Plus
133
(
6
),
218
(
2018
).
29.
D.
Needell
,
N.
Srebro
,
R.
Ward
,
Math. Program.
vol.
155
,
549
573
(
2016
).
30.
G.
Wang
,
J. C.
Ye
,
K.
Mueller
and
J. A.
Fessler
,
IEEE Transactions on Medical Imaging
37
(
6
),
1289
1296
(
2018
).
This content is only available via PDF.
You do not currently have access to this content.