In this study, the Support Vector Regression (SVR) model was used to forecast air quality time series data which is the particulate matter 10 micrometers or less in diameter (PM10) in Malaysia. Several SVR kernel functions, which are the Linear, Polynomial and Radial Basis Function (RBF) kernels, were considered in this study to determine the most suitable kernel function for forecasting the PM10 time series. The period of the data is from 5th July 2017 to 31st January 2019 consists of five air quality monitoring stations which are Kangar station in Perlis, Tasek Ipoh station in Perak, Shah Alam station in Selangor, Pasir Gudang station in Johor and Kuala Terengganu station in Terengganu. Model performance was compared based on the testing dataset's mean squared error (MSE) values. The results show that the SVR model with Radial Basis Function kernel is more suitable for forecasting the PM10 time series compared to the Linear and Polynomial kernels.

1.
M. S. M.
Nadzir
,
M. C. G.
Ooi
,
K. M.
Alhasa
,
M. A. A.
Bakar
,
A. A. A.
Mohtar
,
M. F. F. M.
Nor
,
M. T.
Latif
,
H. H. Abd
Hamid
,
S. H. M.
Ali
,
N. M.
Ariff
, N.M. and
J.
Anuar
,
J., Aerosol and Air Quality Research
20
(
6
),
1237
1248
(
2020
).
2.
L.
Mendes
,
J.
Monjardino
and
F.
Ferreira
,
Frontiers in Big Data
5
,
826517
(
2022
).
3.
B. S.
Freeman
,
G.
Taylor
,
B.
Gharabaghi
and J.
The ´, Journal of the Air & Waste Management Association
68
(
8
),
866
886
(
2018
).
4.
H.
Zhang
,
S.
Zhang
,
P.
Wang
,
Y.
Qin
and
H.
Wang
,
Journal of the Air & Waste Management Association
67
(
7
),
776
788
(
2017
).
5.
M. A. A.
Bakar
,
N. M.
Ariff
,
M. S. M.
Nadzir
,
O.L.
Wen
and
F. N. A.
Suris
,
Malaysian Journal of Fundamental and Applied Sciences
18
(
1
),
52
59
(
2022
).
6.
H.
Nguyen
,
SN Applied Sciences
1
(
4
):
1
10
(
2019
).
7.
S.
Maldonado
,
A.
González
and
S.
Crone
,
Applied Soft Computing
83
,
105616
(
2019
).
8.
E. G.
Ortiz-García
,
S.
Salcedo-Sanz
,
Á. M.
Pérez-Bellido
,
J. A.
Portilla-Figueras
and
L.
Prieto
,
Atmospheric Environment
44
(
35
),
4481
4488
(
2010
).
9.
B. C.
Liu
,
A.
Binaykia
,
P. C.
Chang
,
M. K.
Tiwari
and
C. C.
Tsao
,
PloS ONE
12
(
7
),
e0179763
(
2017
).
10.
C.
Cortes
and
V.
Vapnik
,
Machine Learning
20
(
3
),
273
297
(
1995
).
11.
K. S.
Durgesh
and
B.
Lekha
,
Journal of Theoretical and Applied Information Technology
12
(
1
),
1
7
(
2010
).
12.
C. J.
Lu
,
T. S.
Lee
and
C. C.
Chiu
,
Decision Support Systems
47
(
2
),
115
125
(
2009
).
13.
K.
Lin
,
Q.
Lin
,
C.
Zhou
and
J.
Yao
, “Time series prediction based on linear regression and SVR,” in
Third International Conference on Natural Computation (ICNC 2007)
, Vol.
1
(
IEEE Computer Society
,
2007
), pp.
688
691
.
This content is only available via PDF.
You do not currently have access to this content.