Because of its numerous applications in areas like biology, physics, and economics, nonlinear analysis research is becoming more and more popular. The major challenge in this theory is to determine precisely the limiting points under the trajectories of the considered operators. In this paper, we focus on the simplest nonlinear operator which is Quadratics Stochastic Operators (QSOs) and limited ourselves to one of the classes of QSOs namely, class b-bistochastic QSOs. In particular, we provide a comprehensive description of the fixed points for two-dimensional b-bistochastic QSOs which opens up the door a thorough explanation of the limiting points.

1.
S.
Bernstein
, “
Solution of a mathematical problem related to the theory of inheritance
,”
Uch. Zap. n.-i. kaf. Ukrainy
1
,
83
115
(
1924
).
2.
U.
Rozikov
and
S.
Shoyimardonov
, “
Ocean ecosystem discrete time dynamics generated by £ volterra operators
,”
International Journal of Biomathematics
12
,
1950015
(
2019
).
3.
R.
Abdulghafor
,
S.
Almotairi
,
H.
Almohamedh
,
B.
Almutairi
,
A.
Bajahzar
, and
S. S.
Almutairi
, “
A nonlinear convergence consensus: Extreme doubly stochastic quadratic operators for multi-agent systems
,”
Symmetry
12
,
540
(
2020
).
4.
N.
Ganikhodjaev
,
M.
Saburov
, and
U.
Jamilov
, “
Mendelian and non-mendelian quadratic operators
,”
Applied Mathematics and Information Sciences
7
,
1721
1729
(
2013
).
5.
N. N.
Ganikhodjaev
,
R. N.
Ganikhodjaev
, and
U.
Jamilov
, “
Quadratic stochastic operators and zero-sum game dynamics
,”
Ergodic Theory and Dynamical Systems
35
,
1443
(
2015
).
6.
Y. I.
Lyubich
, “
Iterations of quadratic maps
,”
Math. Econ. Funct. Anal. M: Nauka
1
,
107
138
(
1974
).
7.
S. S.
Vallander
, “On the limit behavior of iteration sequences of certain quadratic transformations,” in
Doklady Akademii Nauk
, Vol.
202
(
Russian Academy of Sciences
,
1972
) pp.
515
517
.
8.
R.
Ganikhodzhaev
, “
Quadratic stochastic operators, lyapunov functions, and tournaments
,”
Sbornik: Mathematics
76
,
489
(
1993
).
9.
M.
Badocha
and
W.
Bartoszek
, “
Quadratic stochastic operators on banach lattices
,”
Positivity
22
,
477
492
(
2018
).
10.
F.
Mukhamedov
and
A. F.
Embong
, “
Infinite dimensional orthogonality preserving nonlinear markov operators
,”
Linear and Multilinear Alge-bra
,
1
25
(
2019
).
11.
N. Z. A.
Hamzah
,
S. N.
Karim
,
M.
Selvarajoo
, and
A.
Sahabudin
, “
Dynamics of nonlinear operator generated by lebesgue quadratic stochastic operator with exponential measure
,”
Mathematics and Statistics
10
(
2022
).
12.
U.
Jamilov
,
K. O.
Khudoyberdiev
, and
M.
Ladra
, “
Quadratic operators corresponding to permutations
,”
Stochastic Analysis and Applications
38
,
929
938
(
2020
).
13.
R. N.
Ganikhodzhaev
, “
On the definition of bistochastic quadratic operators
,”
Russian Mathematical Surveys
48
,
244
246
(
1993
).
14.
F.
Mukhamedov
and
N.
Ganikhodjaev
, "
Quantum quadratic operators and processes
", Vol.
2133
(
Springer
,
2015
).
15.
M.
Saburov
and
K.
Saburov
, “
Ganikhodjaev's conjecture on mean ergodicity of quadratic stochastic operators
,”
Lobachevskii Journal of Mathematics
41
,
1014
1020
(
2020
).
16.
A. F.
Embong
and
N. N. B. L. B.
Chye
@
Mohd Hairie
Lim
, “Regularity of b-bistochastic-volterra quadratic stochastic operators,” in
AIP Conference Proceedings
, Vol.
2465
(
AIP Publishing LLC
,
2022
) p.
020014
.
17.
S. B.
Abdurakhimova
and
U. A.
Rozikov
, “
Dynamical system of a quadratic stochastic operator with two discontinuity points
,”
Mathematical Notes
111
,
676
687
(
2022
).
18.
F.
Mukhamedov
and
A. F.
Embong
, “
On b-bistochastic quadratic stochastic operators
,”
Journal of Inequalities and Applications
2015
,
226
(
2015
).
19.
F.
Mukhamedov
and
A. F.
Embong
, “
On stable b-bistochastic quadratic stochastic operators and associated non-homogenous markov chains
,”
Linear and Multilinear Algebra
66
,
1
21
(
2018
).
20.
F.
Mukhamedov
and
A. F.
Embong
, “On mixing of markov measures associated with b-bistochastic qsos,” in
AIP Conference Proceedings
, Vol.
1739
(
AIP Publishing LLC
,
2016
) p.
020090
.
21.
F.
Mukhamedov
and
A.
Embong
, “
Extremity of (b )-bistochastic quadratic stochastic operators on 2d simplex
,”
Malaysian Journal of Math-ematical Sciences
11
,
119
139
(
2017
).
22.
F.
Mukhamedov
and
A. F.
Embong
, “b—bistochastic quadratic stochastic operators and their properties,” in
Journal of Physics: Conference Series
, Vol.
697
(
IOP Publishing
,
2016
) p.
012010
.
23.
R.
Ganikhodzhaev
,
F.
Mukhamedov
, and
U.
Rozikov
, “
Quadratic stochastic operators and processes: results and open problems
,”
Infinite Dimensional Analysis, Quantum Probability and Related Topics
14
,
279
335
(
2011
).
24.
D. S.
Parker
and
P.
Ram
,
Greed and Majorization
(
1997
).
25.
G. H.
Hardy
,
J. E.
Littlewood
, and
G.
Polya
,
Inequalities
(
Cambridge university press
,
1952
).
This content is only available via PDF.
You do not currently have access to this content.