In this paper, we recall the notion of a quadratic stochastic operator (QSO) generated by a special distribution on infinite state space. Also, we consider the concept of genetic algebras generated by these QSOs. This paper aims to study the idempotency in the genetic algebras generated by QSO and defined by special distributions, including geometric, Poisson, mixture geometric, mixture Poisson and heterogeneous mixture geometric and Poisson distributions.

1.
S.
Bernstein
,,
Ann. Math. Stat
,
13
,
53
61
(
1942
).
2.
Y. I.
Lyubich
,
Russ. Math. Surv
,
26
,
51
123
(
1971
).
3.
J.
Hofbauer
and
K.
Sigmund
,
Evolutionary Games and Population Dynamics
,
Cambridge University Press
, (
1998
).
4.
M.
Plank
,,
J. Math. Phys
,
36
,
3520
3534
(
1995
).
5.
Y. I.
Lyubich
,
Mathematical structure in population genetics
,
Springer Berlin
,
Heidelberg
, (
1992
).
6.
N.
Ganikhodjaev
and
N. Z. A.
Hamzah
,
Sci. World J. Hindawi Publishing Corporation
, 2014 (ID 832861) (
2014
).
7.
N.
Ganikhodjaev
and
N. Z. A.
Hamzah
,
AIP Conf Proc
,
1643
,
706
712
(
2015
).
8.
S. N.
Karim
,
N. Z. A.
Hamzah
,
N. N. M.
Fauzi
and
N.
Ganikhodjaev
,
J. Phys.: Conf. Ser
,
1988
1
,
1
10
(
2021
).
9.
N.
Ganikhodjaev
and
K.
Ftameh
,
AIP Conf Proc
,
2184
(
2019
).
10.
I.
Qaralleh
and
F.
Mukhamedov
,
Linear Multilinear Algebra. Taylor & Francis
,
69
,
2228
2244
(
2021
).
11.
N.
Ganikhodjaev
and
K.
Ftameh
,
AIP Conf Proc
,
2423
:
060004
(
2021
).
This content is only available via PDF.
You do not currently have access to this content.