We study black hole solutions in dilatonic Einstein-Gauss-Bonnet theory with a coupling constant α between the dilaton field and the Gauss-Bonnet term. In a previous study, we considered the black hole with the vanishing cosmological constant in this theory and constructed the hairy black hole solution with the negative α. In this study, we present black hole solutions numerically with various physical properties in anti-de Sitter spacetime. We describe the procedure for constructing the black hole solutions in detail.
REFERENCES
1.
G. W.
Horndeski
, “Second-order scalar-tensor field equations in a four-dimensional space
,” Int. J. Theor. Phys.
10
, 363
–384
(1974
).2.
M.
Ostrogradsky
, “Mémoires sur les équations différentielles, relatives au problème des isopérimètres
,” Mem. Acad. St. Petersbourg
6
, 385
– 517
(1850
).3.
R. P.
Woodard
, “Ostrogradsky’s theorem on hamiltonian instability
,” Scholarpedia
10
, 32243
(2015
), arXiv:1506.02210 [hep-th].4.
S.
Nojiri
, S. D.
Odintsov
, and V. K.
Oikonomou
, “Ghost-free Gauss-Bonnet Theories of Gravity
,” Phys. Rev. D
99
, 044050
(2019
), arXiv:1811.07790 [gr-qc].5.
P.
Kanti
, N. E.
Mavromatos
, J.
Rizos
, K.
Tamvakis
, and E.
Winstanley
, “Dilatonic black holes in higher curvature string gravity
,” Phys. Rev. D
54
, 5049
–5058
(1996
), arXiv:hep-th/9511071.6.
T.
Torii
, H.
Yajima
, and K.-i.
Maeda
, “Dilatonic black holes with Gauss-Bonnet term
,” Phys. Rev. D
55
, 739
–753
(1997
), arXiv:gr-qc/9606034.7.
R.
Ruffini
and J. A.
Wheeler
, “Introducing the black hole
,” Phys. Today
24
, 30
(1971
).8.
J. D.
Bekenstein
, “Transcendence of the law of baryon-number conservation in black hole physics
,” Phys. Rev. Lett.
28
, 452
–455
(1972
).9.
J. D.
Bekenstein
, “Novel ‘‘no-scalar-hair’’ theorem for black holes
,” Phys. Rev. D
51
, R6608
(1995
).10.
C. A. R.
Herdeiro
and E.
Radu
, “Asymptotically flat black holes with scalar hair: a review
,” Int. J. Mod. Phys. D
24
, 1542014
(2015
), arXiv:1504.08209 [gr-qc].11.
G.
Antoniou
, A.
Bakopoulos
, and P.
Kanti
, “Evasion of no-hair theorems and novel black-hole solutions in gauss-bonnet theories
,” Phys. Rev. Lett.
120
, 131102
(2018
), arXiv:1711.03390 [hep-th].12.
B.-H.
Lee
, W.
Lee
, and D.
Ro
, “Expanded evasion of the black hole no-hair theorem in dilatonic einstein-gauss-bonnet theory
,” Phys. Rev. D
99
, 024002
(2019
), arXiv:1809.05653 [gr-qc].13.
V. V.
Kiselev
, “Quintessence and black holes
,” Class. Quant. Grav.
20
, 1187
–1198
(2003
), arXiv:gr-qc/0210040.14.
I.
Cho
and H.-C.
Kim
, “Simple black holes with anisotropic fluid
,” Chin. Phys. C
43
, 025101
(2019
), arXiv:1703.01103 [gr-qc].15.
H.-C.
Kim
, B.-H.
Lee
, W.
Lee
, and Y.
Lee
, “Rotating black holes with an anisotropic matter field
,” Phys. Rev. D
101
, 064067
(2020
), arXiv:1912.09709 [gr-qc].16.
H.
Kim
, “Brans-dicke theory as an unified model for dark matter - dark energy
,” Mon. Not. Roy. Astron. Soc.
364
, 813
–822
(2005
), arXiv:astro-ph/0408577.17.
K. Y.
Kim
, H. W.
Lee
, and Y. S.
Myung
, “Instability of agegraphic dark energy models
,” Phys. Lett. B
660
, 118
–124
(2008
), arXiv:0709.2743 [gr-qc].18.
S. M.
Ko
, J.-H.
Park
, and M.
Suh
, “The rotation curve of a point particle in stringy gravity
,” JCAP
06
, 002
(2017
), arXiv:1606.09307 [hep-th].19.
S.
Kang
, S.
Scopel
, and G.
Tomar
, “Probing dama/libra data in the full parameter space of wimp effective models of inelastic scattering
,” Phys. Rev. D
99
, 103019
(2019
), arXiv:1902.09121 [hep-ph].20.
J.-W.
Lee
, H.-C.
Kim
, and J.
Lee
, “Radial acceleration relation from ultra-light scalar dark matter
,” Phys. Lett. B
795
, 206
–210
(2019
), arXiv:1901.00305 [astro-ph.GA].21.
Z.-K.
Guo
, N.
Ohta
, and T.
Torii
, “Black holes in the dilatonic einstein-gauss-bonnet theory in various dimensions ii. asymptotically ads topological black holes
,” Prog. Theor. Phys.
121
, 253
–273
(2009
), arXiv:0811.3068 [gr-qc].22.
N.
Ohta
and T.
Torii
, “Black holes in the dilatonic einstein-gauss-bonnet theory in various dimensions. iii. asymptotically ads black holes with k=+-1
,” Prog. Theor. Phys.
121
, 959
–981
(2009
), arXiv:0902.4072 [hep-th].23.
T. P.
Sotiriou
and S.-Y.
Zhou
, “Black hole hair in generalized scalar-tensor gravity
,” Phys. Rev. Lett.
112
, 251102
(2014
), arXiv:1312.3622 [gr-qc].24.
T. P.
Sotiriou
and S.-Y.
Zhou
, “Black hole hair in generalized scalar-tensor gravity: An explicit example
,” Phys. Rev. D
90
, 124063
(2014
), arXiv:1408.1698 [gr-qc].25.
D. D.
Doneva
and S. S.
Yazadjiev
, “New Gauss-Bonnet Black Holes with Curvature-Induced Scalarization in Extended Scalar-Tensor Theories
,” Phys. Rev. Lett.
120
, 131103
(2018
), arXiv:1711.01187 [gr-qc].26.
H. O.
Silva
, J.
Sakstein
, L.
Gualtieri
, T. P.
Sotiriou
, and E.
Berti
, “Spontaneous scalarization of black holes and compact stars from a gauss-bonnet coupling
,” Phys. Rev. Lett.
120
, 131104
(2018
), arXiv:1711.02080 [gr-qc].27.
C. A. R.
Herdeiro
, E.
Radu
, N.
Sanchis-Gual
, and J. A.
Font
, “Spontaneous scalarization of charged black holes
,” Phys. Rev. Lett.
121
, 101102
(2018
), arXiv:1806.05190 [gr-qc].28.
Y. S.
Myung
and D.-C.
Zou
, “Gregory-laflamme instability of black hole in einstein-scalar-gauss-bonnet theories
,” Phys. Rev. D
98
, 024030
(2018
), arXiv:1805.05023 [gr-qc].29.
M.
Minamitsuji
and T.
Ikeda
, “Scalarized black holes in the presence of the coupling to gauss-bonnet gravity
,” Phys. Rev. D
99
, 044017
(2019
), arXiv:1812.03551 [gr-qc].30.
A.
Bakopoulos
, G.
Antoniou
, and P.
Kanti
, “Novel black-hole solutions in einstein-scalar-gauss-bonnet theories with a cosmological constant
,” Phys. Rev. D
99
, 064003
(2019
), arXiv:1812.06941 [hep-th].31.
M. M.
Stetsko
, “Topological black hole in the theory with nonminimal derivative coupling with power-law maxwell field and its thermody-namics
,” Phys. Rev. D
99
, 044028
(2019
), arXiv:1812.10074 [hep-th].32.
M.
Khodadi
, A.
Allahyari
, S.
Vagnozzi
, and D. F.
Mota
, “Black holes with scalar hair in light of the event horizon telescope
,” JCAP
09
, 026
(2020
), arXiv:2005.05992 [gr-qc].33.
D. D.
Doneva
, K. V.
Staykov
, S. S.
Yazadjiev
, and R. Z.
Zheleva
, “Multiscalar gauss-bonnet gravity: Hairy black holes and scalarization
,” Phys. Rev. D
102
, 064042
(2020
), arXiv:2006.11515 [gr-qc].34.
S.
Kawai
and J.
Kim
, “Primordial black holes from gauss-bonnet-corrected single field inflation
,” Phys. Rev. D
104
, 083545
(2021
), arXiv:2108.01340 [astro-ph.CO].35.
G. W.
Gibbons
and S. W.
Hawking
, “Action integrals and partition functions in quantum gravity
,” Phys. Rev. D
15
, 2752
–2756
(1977
).36.
R. C.
Myers
, “Higher derivative gravity, surface terms and string theory
,” Phys. Rev. D
36
, 392
(1987
).37.
S. C.
Davis
, “Generalized Israel junction conditions for a Gauss-Bonnet brane world
,” Phys. Rev. D
67
, 024030
(2003
), arXiv:hep-th/0208205.38.
S.
Khimphun
, B.-H.
Lee
, and W.
Lee
, “Phase transition for black holes in dilatonic Einstein-Gauss-Bonnet theory of gravitation
,” Phys. Rev. D
94
, 104067
(2016
), arXiv:1605.07377 [gr-qc].39.
W.-K.
Ahn
, B.
Gwak
, B.-H.
Lee
, and W.
Lee
, “Instability of Black Holes with a Gauss–Bonnet Term
,” Eur. Phys. J. C
75
, 372
(2015
), arXiv:1412.4189 [gr-qc].40.
W.-K.
Ahn
, B.
Gwak
, B.-H.
Lee
, and W.
Lee
, “Entropy preference of black holes in dilatonic einstein-gauss-bonnet theory of gravitation
,” in 14th Italian-Korean Symposium on Relativistic Astrophysics
(2017
).41.
P.
Kanti
, B.
Kleihaus
, and J.
Kunz
, “Stable Lorentzian Wormholes in Dilatonic Einstein-Gauss-Bonnet Theory
,” Phys. Rev. D
85
, 044007
(2012
), arXiv:1111.4049 [hep-th].42.
A.
Bakopoulos
, Black holes and wormholes in the Einstein-scalar-Gauss-Bonnet generalized theories of gravity
, Ph.D. thesis, Ioannina U
. (2020
), arXiv:2010.13189 [gr-qc].43.
A.
Papageorgiou
, C.
Park
, and M.
Park
, “Rectifying no-hair theorems in Gauss-Bonnet theory
,” Phys. Rev. D
106
, 084024
(2022
), arXiv:2205.00907 [hep-th].
This content is only available via PDF.
© 2024 Author(s). Published under an exclusive license by AIP Publishing.
2024
Author(s)
You do not currently have access to this content.