This paper shows that contrarily to the common perception, the gravity of General Relativity (GR) can produce the gravity of Special Relativity (SR) and vice-versa. This is done via the time dilation that originates from the metric of GR in order to obtain the corresponding SR Lagrangian. The reverse procedure is also achievable and it is presented here as well. Thus, the Newtonian Gravitational Potential according to SR leads to the corresponding non-Riemannian metric of GR. In fact, the SR gravity can be extended to any kind of GR spacetime metric (including the non-Riemannian spacetimes with Finsler geometry) rather than the simple description of Einstein field equations of Riemannian GR. The Case Study of gravity with Spherical Symmetry is analytically presented. This is applied to repulsive / black holes according to Schwarzschild metric and Teleparallel gravity and also to wormholes. Finally, we prove that there exist gravitational fields where the particles have superluminal speeds according to GR and SR.

1.
A.
Einstein
,
Relativity: The Special and General Theory
(
Holt
,
New York, USA
,
1920
). Translated by R. W. Lawson.
2.
W.
Rindler
,
Relativity: Special, General and Cosmological
(
Oxford University Press
,
New York, USA
,
2006
),
2nd ed
. [ISBN: 978-0-19-856732-5]
3.
M.
Tsamparlis
,
Special relativity: An introduction with 200 problems and solutions
(
Springer-Verlag
,
Berlin Heidelberg
,
2010
),
1st ed
. [ISBN: 978-3-642-03836-5]
4.
S.
Vossos
,
E.
Vossos
,
C. G.
Massouros
, “
The Relation between General Relativity’s Metrics and Special Relativity’s Gravitational Scalar Generalized Potentials and Case Studies on the Schwarzschild Metric, Teleparallel Gravity, and Newtonian Potential
”,
Particles
04
,
4040039
,
536
576
(
2021
). [DOI: ]
5.
S.
Vossos
and
E.
Vossos
,
C. G.
Massouros
, “
Explanation of Light Deflection, Precession of Mercury’s Perihelion, Gravitational Red Shift and Rotation Curves in Galaxies, by using General Relativity or equivalent Generalized Scalar Gravitational Potential, according to Special Relativity and Newtonian Physics
” in
Mathematical Modeling in Physical Sciences-2020 J. Phys.: Conf. Ser.
1730
,
012080
(
2021
). [DOI: ]
6.
B.
Turimov
,
A.
Abdujabbarov
,
B.
Ahmedov
,
Z.
Stuchlík
, “
Generic Three-Parameter Wormhole Solution in Einstein-Scalar Field Theory
”,
Particles
,
05
,
5010001
,
1
11
(
2022
). [DOI: ]
7.
K.
Schwarzschild
, “
Über das Gravitationsfeld eines Massenpunktes nach der Einsteinschen Theorie
”,
Sitz. der Königlich Preuss. Akad. der Wiss.
1916
,
7
,
189
196
(
1916
).
8.
K.
Hayashi
,
T.
Shirafuji
, “
New General Relativity
”,
Phys. Rev. D
19
,
12
,
3524
3553
(
1979
). [DOI: ].
9.
K. S.
Virbhadra
, “
Janis-Newman-Winicour and Wyman Solutions are the Same
”,
Int. J. Mod. Phys. A
12
,
4831
4835
(
1997
). [DOI: ].
This content is only available via PDF.
You do not currently have access to this content.