In an increasing number of vehicle dynamics applications, from virtual prototyping and on-board control systems to real-time simulations, a tire-road interaction model is essential to obtain reliable results in reality’s representation. In the recent years, an advanced multiphysical tire model, called adheRIDE, has been developed to take advantage of the accuracy and quite low computational cost offered by the underlying tire Magic Formula dynamic model, also including the effects linked to tire thermal and wear conditions, compound viscoelastic properties, and road roughness characteristics, making use of auxiliary multiphysical formulations, modifying the parameters of the original MF model in runtime. The necessity to parametrize the advanced MF model has led in the development of an interactive tool RIDElab, able to identify the miscellaneous model parameters on experimental data acquirable in outdoor or indoor testing sessions. The RIDElab tool is presented highlighting the methodological steps and the smart features introduced. The goodness of the model parameterization and the potential of the RIDElab methodology is validated on a real case-study, employing the experimental data acquired in outdoor handling session with a motorsport partner.

1.
Y.
Papadopoulos
,
C.
Grante
,
Evolving car designs using model-based automated safety analysis and optimisation techniques
,
Journal of Systems and Software
76
(
1
) (
2005
)
77
89
.
2.
R.
Hussain
,
S.
Zeadally
,
Autonomous cars: Research results, issues, and future challenges
,
IEEE Communications Surveys & Tutorials
21
(
2
) (
2018
)
1275
1313
.
3.
N.
Kalra
,
S. M.
Paddock
,
Driving to safety: How many miles of driving would it take to demonstrate autonomous vehicle reliability?
,
Trans-portation Research Part A: Policy and Practice
94
(
2016
)
182
193
.
4.
H. B.
Pacejka
,
The tyre as a vehicle component, in: 26th FISITA Congress, 16-13 June 1996, Prague, Czechoslovakia
,
1996
, pp.
112
125
.
5.
M.
Guiggiani
,
The science of vehicle dynamics
,
Pisa, Italy
:
Springer Netherlands
(
2014
).
6.
A.
Eichberger
,
M.
Schittenhelm
,
Implementations, applications and limits of tyre models in multibody simulation
,
Vehicle System Dynamics 43 (sup1)
(
2005
)
18
29
.
7.
A.
Sakhnevych
,
Multi-physical approach for tire contact and wear mechanisms modelling
, Ph.D. thesis, Ph. D. thesis,
Università degli Studi di Napoli Federico II
,
Naples
(
2017
).
8.
S.
Uhlar
,
F.
Heyder
,
T.
König
,
Assessment of two physical tyre models in relation to their nvh performance up to 300 hz
,
Vehicle System Dynamics
(
2019
)
1
21
.
9.
D.
Ammon
,
Vehicle dynamics analysis tasks and related tyre simulation challenges
,
Vehicle System Dynamics
43
(
sup 1
) (
2005
)
30
47
.
10.
F.
Farroni
,
A.
Sakhnevych
,
Tire multiphysical modeling for the analysis of thermal and wear sensitivity on vehicle objective dynamics and racing performances
,
Simulation Modelling Practice and Theory
117
(
2022
)
102517
.
11.
M.
Gipser
,
Ftire–the tire simulation model for all applications related to vehicle dynamics
,
Vehicle System Dynamics
45
(
S1
) (
2007
)
139
151
.
12.
A.
Gallrein
,
M.
Bäcker
,
Cdtire: a tire model for comfort and durability applications
,
Vehicle System Dynamics
45
(
S1
) (
2007
)
69
77
.
13.
C.
Wei
,
O. A.
Olatunbosun
,
Transient dynamic behaviour of finite element tire traversing obstacles with different heights
,
Journal of Terrame-chanics
56
(
2014
)
1
16
.
14.
L.
Teodosio
,
G.
Alferi
,
A.
Genovese
,
F.
Farroni
,
B.
Mele
,
F.
Timpone
,
A.
Sakhnevych
,
A numerical methodology for thermo-fluid dynamic modelling of tyre inner chamber: towards real time applications
,
Meccanica
56
(
3
) (
2021
)
549
567
.
15.
H.
Pacejka
,
I.
Besselink
,
Magic formula tyre model with transient properties
,
Vehicle system dynamics
27
(
S1
) (
1997
)
234
249
.
16.
L.
Romano
,
A.
Sakhnevych
,
S.
Strano
,
F.
Timpone
,
A novel brush-model with flexible carcass for transient interactions
,
Meccanica
54
(
10
) (
2019
)
1663
1679
.
17.
K. B.
Singh
,
S.
Sivaramakrishnan
,
An adaptive tire model for enhanced vehicle control systems
,
SAE International Journal of Passenger Cars-Mechanical Systems
8
(
2015-01-1521
) (
2015
)
128
145
.
18.
S.
Santini
,
N.
Albarella
,
V. M.
Arricale
,
R.
Brancati
,
A.
Sakhnevych
,
On-board road friction estimation technique for autonomous driving vehicle-following maneuvers
,
Applied Sciences
11
(
5
) (
2021
)
2197
.
19.
K. B.
Singh
,
Vehicle sideslip angle estimation based on tire model adaptation
,
electronics
8
(
2
) (
2019
)
199
.
20.
D.
Capra
,
F.
Farroni
,
A.
Sakhnevych
,
G.
Salvato
,
A.
Sorrentino
,
F.
Timpone
,
On the implementation of an innovative temperature-sensitive version of pacejka’s mf in vehicle dynamics simulations
, in:
Conference of the Italian Association of Theoretical and Applied Mechanics
,
Springer
,
2019
, pp.
1084
1092
.
21.
F.
Farroni
,
M.
Russo
,
A.
Sakhnevych
,
F.
Timpone
,
Trt evo: Advances in real-time thermodynamic tire modeling for vehicle dynamics simula-tions
,
Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering
233
(
1
) (
2019
)
121
135
.
22.
F.
Farroni
,
A.
Sakhnevych
,
F.
Timpone
,
Physical modelling of tire wear for the analysis of the influence of thermal and frictional effects on vehicle performance
,
Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications
231
(
1-2
) (
2017
)
151
161
.
23.
A.
Genovese
,
G. A.
D’Angelo
,
A.
Sakhnevych
,
F.
Farroni
,
Review on friction and wear test rigs: An overview on the state of the art in tyre tread friction evaluation
,
Lubricants
8
(
9
) (
2020
)
91
.
24.
A.
Genovese
,
A.
Maiorano
,
R.
Russo
,
A novel methodology for non-destructive characterization of polymers’ viscoelastic properties
,
Interna-tional Journal of Applied Mechanics
14
(
3
) (
2022
)
2250017
.
25.
V. L.
Popov
,
Contact mechanics and friction
,
Springer
,
2010
.
26.
D.
Arosio
,
F.
Braghin
,
F.
Cheli
,
E.
Sabbioni
,
Identification of pacejka’s scaling factors from full-scale experimental tests
,
Vehicle System Dynamics
43
(
sup 1
) (
2005
)
457
474
.
27.
J.
Cabrera
,
A.
Ortiz
,
E.
Carabias
,
A.
Simon
,
An alternative method to determine the magic tyre model parameters using genetic algorithms
,
Vehicle system dynamics
41
(
2
) (
2004
)
109
127
.
28.
A. V.
Alagappan
,
K. N.
Rao
,
R. K.
Kumar
,
A comparison of various algorithms to extract magic formula tyre model coefficients for vehicle dynamics simulations
,
Vehicle System Dynamics
53
(
2
) (
2015
)
154
178
.
29.
A.
Schommer
,
A.
Ogliari
,
M.
Martins
,
Affordance-based design of a tool for tire data analysis
,
Tech. rep., SAE Technical Paper
(
2016
).
30.
F.
Farroni
,
R.
Lamberti
,
N.
Mancinelli
,
F.
Timpone
,
Trip-id: A tool for a smart and interactive identification of magic formula tyre model parameters from experimental data acquired on track or test rig
,
Mechanical Systems and Signal Processing
102
(
2018
)
1
22
.
31.
S.
Ninan
,
V.
Shete
,
I.
Nadkarni
,
Fstire: An open-source magic formula parameter estimation tool
,
SAE International Journal of Vehicle Dynamics, Stability, and NVH
5
(
10-05-01-0001
) (
2021
)
3
13
.
This content is only available via PDF.
You do not currently have access to this content.