The increasing catastrophic event has given rise to substantial property losses over past decade. In catastrophe insurance products, the form of risk is the value of the loss in the event of catastrophe, where the risk value is one of the factors measuring the potential for claims that will occur. This paper discusses how to estimate the maximum potential claim from the risk of catastrophic event. In this case, the potential claim is obtained based on the value of losses due to flood in Indonesia (2010-2020). To estimate the maximum potential claim, the Extreme Value Theory (EVT) method is used. There are several stages in this research. The first step is, determine the threshold value to get extreme data. Then, the Kolmogorov Smirnov test was carried out to determine the suitability of the extreme data with the Generalized Pareto Distribution (GPD). After that, estimate the GPD parameters. Then, calculate the Value-at-Risk (VaR) value as a measure of the maximum potential claim. The results of this study get the maximum potential claim for the next year is of IDR 13.9365058 trillion with a 95% confidence level. Based on the estimated potential claim, it can be used as the basis for making catastrophe insurance products that are suitable.

1.
W. C.
Lin
, Y. H. "
Evaluating catastrophe reinsurance contracts: an option pricing approach with extreme risk
".
Applied financial economics
,
22
(
12
),
1017
1028
(
2012
).
2.
A. B.
Bortoluzzo
,
D. P.
Claro
,
M. A. L.
Caetano
,
R.
Artes
. "
Estimating total claim size in the auto insurance industry: a comparison between tweedie and zero-adjusted inverse gaussian distribution
".
BAR-Brazilian Administration Review
,
8
,
37
47
(
2011
).
3.
M. P. A.
Saputra
,
E. S.
Hasbullah
,
F.
Sukono
. "
Estimasi Potensi Klaim Maksimal Dalam Risiko Kerugian Kebakaran Rumah Dengan Metode Extreme Value Theory (Evt) Di Kota Bandung
".
KUBIK: Jurnal Publikasi Ilmiah Matematika
,
5
(
2
),
108
117
(
2020
).
4.
G.
Magnou
, “
An Application of Extreme Value Theory for Measuring Financial Risk in the Uruguayan Pension Fund
,”
Compendium
,
4
,
1
19
(
2017
).
5.
Q. C.
Chukwudum
, “
Reinsurance Pricing of Large Motor Insurance Claims in Nigeria: An Extreme Value Analysis
,”
International Journal of Statistics and Probability
,
8
(
4
),
1
12
(
2019
).
6.
W.
Chao
, “
Pricing catastrophe reinsurance under the standard deviation premium principle
,”
AIMS Mathematics
,
7
(
3
),
4472
4484
(
2022
).
7.
M.
Rydman
, “
Application of the Peaks-Over-Threshold Method on Insurance Data
,”
Uppsala Univ. U.U.D.M. Proj. Rep.
,
32
,
1
21
(
2018
).
8.
N.
Salleh
,
F.
Yusof
,
Z.
Yusop
, “
Bivariate copulas functions for flood frequency analysis
,”
AIP Conference Proceeding,
1750
(
1
),
060007
(
2016
).
9.
J.
Sodiq
,
Setiawan
,
Sutikno
, “
Pengukuran Risiko pada Klaim Asuransi ‘X’ dengan Menggunakan Metode Generalized Extreme Value dan Generalize Pareto Dsitribution
,”
Sains dan Seni
,
1
(
1
),
D75
D80
(
2012
).
10.
J.
Jocković
, “
Quantile estimation for the generalized pareto distribution with application to finance
,”
Yugosl. Journal of Operation Research,
22
(
2
),
297
311
(
2012
).
11.
J. E.
Cohen
,
R. A.
Davis
,
G.
Samorodnitsky
. “
Heavy-tailed Distributions, Correlations, Kurtosis and Taylor’s Law of Fluctuation Scaling
”,
Proceedings of the Royal Society A
,
476
(
2244
),
20200610
(
2020
).
12.
S.
Coles
. “Classical Extreme Value Theory and Models. In: An Introduction to Statistical Modeling of Extreme Values”. (
Springer
,
London
,
2001
).
This content is only available via PDF.
You do not currently have access to this content.