Currently, social media is used by almost all ages, from pre-teens to the elderly. They use social media to socialize and express their activities by uploading pictures; however, they sometimes do not realize that the images they upload contain sensitive information. They do not carefully analyze the images to be uploaded due to a lack of knowledge, irresponsible acts, or impaired vision. Therefore, we propose a method to classify images with sensitive or non-sensitive content using Convolutional Neural Network (CNN). This research was performed through several steps: image public dataset collection, data pre-processing, model architecture design, model training, and model validation. A randomly selected sample of 2,000 of 5,537 images from the VizWiz-Priv dataset was used to train the classification model. The CNN architecture was compiled using two max-pooling layers and four convolution layers. Finally, the model was trained and validated using images containing sensitive and non-sensitive information. The results revealed that the model accuracy during training and validation achieved 98.75% and 83.30%, respectively.

1.
E.
McCallister
,
T.
Grance
, and
K.
Kent
, “
Guide to protecting the confidentiality of personally identifiable information (PII
),”
Spec. Publ. 800-122 Guid.
, pp.
1
59
,
2010
.
2.
B.
Du
et al, “
Event encryption for neuromorphic vision sensors: Framework, algorithm, and evaluation
,”
Sensors
, vol.
21
, no.
13
, pp.
1
19
,
2021
, doi: .
3.
Z.
Kuang
,
Z.
Guo
,
J.
Fang
,
J.
Yu
,
N.
Babaguchi
, and
J.
Fan
, “
Unnoticeable synthetic face replacement for image privacy protection
,”
Neurocomputing
, vol.
457
, pp.
322
333
,
2021
, doi: .
4.
X.
Li
,
D.
Li
,
Z.
Yang
, and
W.
Chen
, “
A Patch-Based Saliency Detection Method for Assessing the Visual Privacy Levels of Objects in Photos
,”
IEEE Access
, vol.
5
, pp.
24332
24343
,
2017
, doi: .
5.
T.
Orekondy
,
M.
Fritz
, and
B.
Schiele
, “
Connecting Pixels to Privacy and Utility: Automatic Redaction of Private Information in Images
,”
Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit.
, pp.
8466
8475
,
2018
, doi: .
6.
T.
Orekondy
,
B.
Schiele
, and
M.
Fritz
, “
Towards a Visual Privacy Advisor: Understanding and Predicting Privacy Risks in Images
,”
Proc. IEEE Int. Conf. Comput. Vis.
, vol.
2017
-Octob, no.
i
, pp.
3706
3715
,
2017
, doi: .
7.
J.
Kok-van der Weijde
and
C.
Norden
, “
Personalized Privacy-aware Image Classification Eleftherios
,”
Tidsskr. den Nor. lægeforening Tidsskr. Prakt. Med. ny række
, vol.
135
, no.
5
, p.
440
,
2015
, doi: .
8.
X.
Zhang
et al, “
Random invertible matrix for privacy preserving object detection
,”
Comput. Electr. Eng.
, vol.
90
, no. September 2020, p.
107001
,
2021
, doi: .
9.
C.
Guo
,
J.
Jia
,
K. K. R.
Choo
, and
Y.
Jie
, “
Privacy-preserving image search (PPIS): Secure classification and searching using convolutional neural network over large-scale encrypted medical images
,”
Comput. Secur.
, vol.
99
, p.
102021
,
2020
, doi: .
10.
K. T.
Putra
,
H.
Chen
,
M. R.
Ogiela
,
C.
Chou
,
C.
Weng
, and
Z.
Shae
, “
Federated Compressed Learning Edge Computing Framework with Ensuring Data Privacy for PM2.5 Prediction in Smart City Sensing Applications
,”
Sensors
,
2021
, doi: .
11.
K. P. S.
Kumar
,
S. A. H.
Nair
,
D. Guha
Roy
,
B.
Rajalingam
, and
R. S.
Kumar
, “
Security and privacy-aware Artificial Intrusion Detection System using Federated Machine Learning
,”
Comput. Electr. Eng.
, vol.
96
, no. PA, p.
107440
,
2021
, doi: .
12.
S.
Zerr
,
S.
Siersdorfer
,
J.
Hare
, and
E.
Demidova
, “
Privacy-aware image classification and search
,”
SIGIR’12 - Proc. Int. ACM SIGIR Conf. Res. Dev. Inf. Retr.
, no. August, pp.
35
44
,
2012
, doi: .
13.
A.
Frome
et al, “
Large-scale privacy protection in Google Street View
,”
Proc. IEEE Int. Conf. Comput. Vis.
, pp.
2373
2380
,
2009
, doi: .
14.
D.
Gurari
et al, “
Vizwiz-PRIV: A dataset for recognizing the presence and purpose of private visual information in images taken by blind people
,”
Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit.
, vol.
2019
-June, pp.
939
948
,
2019
, doi: .
15.
J.
Karhunen
,
T.
Raiko
, and
K. H.
Cho
, “
Unsupervised deep learning: A short review
,”
Adv. Indep. Compon. Anal. Learn. Mach.
, pp.
125
142
,
2015
, doi: .
16.
D.
Dais
,
İ. E.
Bal
,
E.
Smyrou
, and
V.
Sarhosis
, “
Automatic crack classification and segmentation on masonry surfaces using convolutional neural networks and transfer learning
,”
Autom. Constr.
, vol.
125
, no. February,
2021
, doi: .
17.
J.
Heo
et al, “
Deep learning model for tongue cancer diagnosis using endoscopic images
,”
Sci. Rep.
, vol.
12
, no.
1
, pp.
1
10
,
2022
, doi: .
18.
K.
Zhang
,
W.
Wang
,
Z.
Lv
,
Y.
Fan
, and
Y.
Song
, “
Computer vision detection of foreign objects in coal processing using attention CNN
,”
Eng. Appl. Artif. Intell.
, vol.
102
, no. October 2020, p.
104242
,
2021
, doi: .
19.
W.
Rahmaniar
and
A.
Hernawan
, “
Real-time human detection using deep learning on embedded platforms: A review
,”
J. Robot. Control
, vol.
2
, no.
6
, pp.
462
468Y
,
2021
, doi: .
20.
I.
Martin-Diaz
,
D.
Morinigo-Sotelo
,
O.
Duque-Perez
, and
R. D. J.
Romero-Troncoso
, “
Advances in Classifier Evaluation: Novel Insights for an Electric Data-Driven Motor Diagnosis
,”
IEEE Access
, vol.
4
, pp.
7028
7038
,
2016
, doi: .
21.
“Google Images.”
https://www.google.com/imghp?hl=EN (accessed Jun. 28,
2021
).
This content is only available via PDF.
You do not currently have access to this content.