GeoPIV8 is an optical flow visualization tool used to observe the soil deformation caused by means such as installation or laterally loading or two-direction loads summation together. A special testing setup has been manufactured to allow continuous installation of the subsequent pile in the group and application of an inclined compression load on the group. The scaled model test will be performed in this study to explore the deformation of dry sandy soil with a relative density of about 60 %. Digital video records are used to observe the deformation. These videos are divided into 60 frames. The clear images are taken to analyze the deformation that occurs due to installation and inclined loading of an equal-length group of two piles. The results show that the deformation trajectories surrounding the pile shaft affect the loading direction; the piles in the group behave as two single piles when the spacing to diameter ratio increases more than 6.4; and the rotation points lie about 67% of the pile length below the soil surface.

1.
Fleming
,
K.
,
Weltman
,
A.
,
Randolph
,
M.
, &
Elson
,
K.
(
2008
).
Piling engineering
.
CRC press
.
2.
Mohammed
K. H.
(
2016
).
Behavior of piles subjected to lateral soil movement.
Ph.D. Dissertation,
University of Baghdad
.
3.
Bauer
,
J.
,
Kempfert
,
H. G.
, &
Reul
,
O.
(
2014
, January).
Lateral pressure on piles due to horizontal soil movement-1 g model tests on single piles and pile rows
. In
Proceedings of the 8th International Conference on Physical Modelling in Geotechnics, (ICPMG2014
),
Perth, Australia
.
4.
White
,
D. J.
(
2002
).
An investigation into the behaviour of pressed-in piles
(Doctoral dissertation,
University of Cambridge
).
5.
Qi
,
C. G.
,
Zheng
,
J. H.
,
Zuo
,
D. J.
, &
Liu
,
G. B.
(
2018
).
Experimental investigation on soil deformation caused by pile buckling in transparent media
.
ASTM International.
6.
Poulos
,
H. G.
, &
Davis
,
E. H.
(
1980
).
Pile foundation analysis and design
(Vol.
397
).
New York
:
Wiley
.
7.
Abdi
,
M. R.
, &
Mirzaeifar
,
H.
(
2017
).
Experimental and PIV evaluation of grain size and distribution on soil– geogrid interactions in pullout test
.
Soils and Foundations
,
57
(
6
),
1045
1058
.
8.
Barghian
,
M.
,
Khaki
Khatibi
, S., &
Hajialilue-Bonab
,
M.
(
2020
).
Soil behavior around the stub abutment of an integral bridge and buried piles in the contraction state
.
Scientia Iranica
,
27
(
1
),
88
104
.
9.
Yang
,
Y.
,
Qi
,
M.
,
Li
,
J.
, &
Ma
,
X.
(
2021
).
Experimental study of flow field around pile groups using PIV
.
Experimental Thermal and Fluid Science
,
120
,
110223
.
10.
Ono
,
S.
,
Namikawa
,
S.
, &
Yoshida
,
K.
(
2020
, March).
Analysis of Soil Deformation and Wheel Traction on Loose Terrain Using PIV
. In
2020 IEEE Aerospace Conference
(pp.
1
7
).
IEEE
.
11.
Qi
,
C. G.
,
Zheng
,
J. H.
,
Zuo
,
D. J.
, &
Liu
,
G. B.
(
2018
).
Experimental investigation on soil deformation caused by pile buckling in transparent media
.
ASTM International.
12.
Jahanger
,
Z. K.
,
Sujatha
,
J.
, &
Antony
,
S. J.
(
2018
).
Local and global granular mechanical characteristics of grain–structure interactions
.
Indian Geotechnical Journal
,
48
(
4
),
753
767
.
13.
Kapogianni
,
E.
, &
Sakellariou
,
M.
(
2017
).
Application of particle image velocimetry (PIV) and digital image correlation (DIC) techniques on scaled slope models
.
Int Res J Eng Technol (IRJET)
,
4
(
9
),
853
860
.
14.
Momeni
,
R.
,
Rostami
,
V.
, &
Khazaei
,
J.
(
2017
).
Study of Physical Modelling for Piles
.
Open Journal of Geology
,
7
(
8
),
1160
1175
.
15.
Hajialilue-Bonab
,
M.
,
Azarnya-Shahgoli
,
H.
, &
Sojoudi
,
Y.
(
2011
).
Soil deformation pattern around laterally loaded piles
.
International Journal of Physical Modelling in Geotechnics
,
11
(
3
),
116
125
.
16.
Lundberg
,
A. B.
(
2013
).
Displacement pile installation effects in sand an experimental study.
Ph.D. Dissertation,
Delft University of Technology
,
Sweden
.
17.
Take
,
W. A.
(
2003
).
The influence of seasonal moisture cycles on clay slopes
(Doctoral dissertation,
University of Cambridge
).
18.
Robinsky
,
E. I.
, &
Morrison
,
C. F.
(
1964
).
Sand displacement and compaction around model friction piles
.
Canadian Geotechnical Journal
,
1
(
2
),
81
93
.
19.
Kishida
,
H.
(
1963
).
Stress distribution by model piles in sand
.
Soils and Foundations
,
4
(
1
),
1
23
.
20.
Karkush
,
M.
(
2016
).
Behavior of pile groups subjected to axial static and lateral cyclic loads in contaminated soils
. In
Geo-China
2016
(pp.
166
174
).
21.
Meyerhof
,
G. G.
(
1959
).
Compaction of sands and bearing capacity of piles
.
Journal of the Soil Mechanics and Foundations Division
,
85
(
6
),
1
29
.
22.
Beijer
,
L. A.
,
Dijkstra
,
J.
, &
Van Tol
,
F.
(
2012
).
On the modelling of piles in sand in the small geotechnical centrifuge
. In
Proceedings of conference, Delft University of Technology and Deltares
,
The Netherlands
(pp.
24
33
).
23.
Joshi
,
R. C.
,
Sharma
,
H. D.
, &
Sparrow
,
D.
(
1989
).
Skin friction distribution along driven piles
. In
Congrès international de mécanique des sols et des travaux de fondations.
12
(pp.
929
932
).
24.
Vipulanandan
,
C.
, &
Mohammed
,
A. S.
(
2014
).
Hyperbolic rheological model with shear stress limit for acrylamide polymer modified bentonite drilling muds
.
Journal of Petroleum Science and Engineering
,
122
,
38
47
.
25.
Karkush
,
M. O.
, &
Aljorany
,
A. N.
(
2020
). Analytical and numerical analysis of piled-raft foundation of storage tank. In
Construction in Geotechnical Engineering
(pp.
373
384
).
Springer
,
Singapore
.
26.
Garnier
,
J.
(
2001
).
Physical models in geotechnics: state of the art and recent advances
.
1st Coulomb Lecture
, 2001.
27.
Ternet
,
O.
(
1999
).
Reconstitution and characterization of massive sand: application to centrifuge testing and calibration chamber
(Doctoral dissertation, Ph. D. Thesis,
University of Caen
, p
184
).
28.
Vesic
,
A. S.
(
1964
).
Investigations of bearing capacity of piles in sand
.
North American Conference on Deep Foundations
.
M Mexico City
.
29.
Terzaghi
,
K.
,
Peck
,
R. B.
, &
Mesri
,
G.
(
1996
).
Soil mechanics in engineering practice
.
John Wiley & Sons
.
30.
Pando
,
M. A.
,
Ealy
,
C. D.
,
Filz
,
G. M.
,
Lesko
,
J. J.
, &
Hoppe
,
E. J.
(
2006
).
A laboratory and field study of composite piles for bridge substructures (No. FHWA-HRT-04-043
).
United States. Federal Highway Administration. Office of Infrastructure Research and Development.
31.
Mostafa
,
Y. E.
(
2012
).
Effect of Local and Global Scour on Lateral Response of Single Piles in Different Soil Conditions
.
Engineering
4
(
6
),
297
306
.
32.
Bienen
,
B.
,
Dührkop
,
J.
,
Grabe
,
J.
,
Randolph
,
M. F.
, &
White
,
D. J.
(
2012
).
Response of piles with wings to monotonic and cyclic lateral loading in sand
.
Journal of Geotechnical and Geoenvironmental Engineering
,
138
(
3
),
364
375
.
33.
Yuan
,
B.
,
Liu
,
J.
,
Chen
,
W.
, &
Xia
,
K.
(
2012
).
Development of a robust Stereo-PIV system for 3-D soil deformation measurement
.
Journal of Testing and Evaluation
,
40
(
2
),
256
264
.
34.
Yuan
,
B.
,
Xu
,
K.
,
Wang
,
Y.
,
Chen
,
R.
, &
Luo
,
Q.
(
2017
).
Investigation of deflection of a laterally loaded pile and soil deformation using the PIV technique
.
International Journal of Geomechanics
,
17
(
6
),
04016138
.
This content is only available via PDF.
You do not currently have access to this content.