Falling among the elderly can be considered one of the most prevalent occurrences that can result in significant injuries such as fractures and head injuries. The risk of falls can be increased when the elderly live alone. Falling without assistance and quick medical intervention would decrease the elderly’s chances of survival. Therefore, fall detection systems, as well as monitoring with alert applications, have been recommended to address this issue. This paper has been commissioned to provide an overview of contemporary uses and advances of fall detection systems with vital sign monitoring for elderly individuals. It emphasizes numerous specifications for the operation and evolution of a smart healthcare system for the elderly, both for monitoring and emergency purposes. A review and comparison of the most recent state-of-the-art research conducted over nine years (2013–2021) has been conducted in terms of Internet of Things (IoT) and hardware platforms, utilized sensors, measured parameters, design, and applications. This paper demonstrates the feasibility of designing and implementing a fall detection and remote vital signs monitoring system based on the available IoT platforms and microcontrollers. It also demonstrates that vital signs can be monitored not only during the fall as it is being detected but also at any time when requested by a caregiver.

1.
WHO
.
Falls.
Accessed January 23, 2022. https://www.who.int/news-room/fact-sheets/detail/falls
2.
Khalifeh
A.F.
,
Saleh
A.
,
Al-Nuimat
M.
,
Tair
D.A.
An open source cloud based platform for elderly health monitoring and fall detection
.
ACM Int Conf Proceeding Ser.
Published online
October
13
,
2016
:
97
100
. doi:
3.
Fakhrulddin
S.S.
First Aid based on Unmanned Aerial Vehicle and Wireless Body Network for Elderly patient during Daily Activities
. Published online
2019
.
4.
Park
S.J.
,
Subramaniyam
M.
,
Kim
S.E.
, et al
Development of the elderly healthcare monitoring system with IoT
.
Adv Intell Syst Comput. 2017
;
482
:
309
315
. doi:
5.
Avvenuti
M.
,
Baker
C.
,
Light
J.
,
Tulpan
D.
,
Vecchio
A.
Non-intrusive patient monitoring of Alzheimer’s disease subjects using wireless sensor networks
.
Congr 2009 - 2009 World Congr Privacy, Secur Trust Manag E-bus.
2009
;(
May 2014
):
161
165
. doi:
6.
D’Souza
M.
,
Ros
M.
,
Karunanithi
M.
An indoor localisation and motion monitoring system to determine behavioural activity in dementia afflicted patients in aged care
.
Electron J Heal Informatics.
2012
;
7
(
2
).
7.
Arteaga
S.
,
Chevalier
J.
,
Coile
A.
, et al
Low-cost accelerometry-based posture monitoring system for stroke survivors
.
ASSETS’08 10th Int ACM SIGACCESS Conf Comput Access.
Published online
2008
:
243
244
. doi:
8.
Degen
T.
,
Jaeckel
H.
,
Rufer
M.
,
Wyss
S.
SPEEDY: A fall detector in a wrist watch
.
Proc - Int Symp Wearable Comput ISWC.
Published online
2003
:
184
189
. doi:
9.
Abbate
S.
,
Avvenuti
M.
,
Light
J.
Stefano
Abbate
- 2014 - Usability-Study-of-a-wireless-monitoring-system-among-Alzheimers-disease-elderly-population2014International-Journal-of-Telemedicine-and-ApplicationsOpen-Access(1).pdf.
2014
;
2014
.
10.
Jarjees
M.S.
,
Ayoub
M.G.
,
Farhan
M.N.
,
Qassim
H.M.
Thingspeak-based respiratory rate streaming system for essential monitoring purposes
.
Bio-Algorithms and Med-Systems.
2020
;
16
(
3
). doi:
11.
Yahya
O.H.
,
Alrikabi
H.T.S.
,
Aljazaery
I.A.
Reducing the data rate in internet of things applications by using wireless sensor network
.
Int J online Biomed Eng.
2020
;
16
(
3
):
107
116
. doi:
12.
Naman
H.A.
,
Hussien
N.A.
,
Al-dabag
M.L.
,
AlRikabi
H.T.S.
Encryption System for Hiding Information Based on Internet of Things
.
Int J Interact Mob Technol.
2021
;
15
(
2
):
172
183
. doi:
13.
Mozaffari
N.
,
Rezazadeh
J.
,
Farahbakhsh
R.
,
Yazdani
S.
,
Sandrasegaran
K.
Practical fall detection based on IoT technologies: A survey
.
Internet of Things (Netherlands)
.
2019
;
8
:
100124
. doi:
14.
Ayoub
M.G.
,
Farhan
M.N.
,
Jarjees
M.S.
Streaming in-patient BPM data to the cloud with a real-time monitoring system
.
Telkomnika (Telecommunication Comput Electron Control)
.
2019
;
17
(
6
):
3120
3125
. doi:
15.
Rashid
S.J.
,
Alkababji
A.M.
,
Khidhir
A.M.
Communication and Network Technologies of IoT in Smart Building: A Survey
.
Ntu J Eng Technol.
2021
;
1
(
1
):
1
18
. https://journals.ntu.edu.iq/index.php/NTU-JET/article/view/50
16.
Rodríguez-Molina
J.
,
Martínez
J.F.
,
Castillejo
P.
,
López
L.
Combining Wireless Sensor Networks and semantic middleware for an internet of things-based sportsman/woman monitoring application
.
Sensors (Switzerland)
.
2013
;
13
(
2
):
1787
1835
. doi:
17.
Kantoch
E.
,
Augustyniak
P.
,
Markiewicz
M.
,
Prusak
D.
Monitoring activities of daily living based on wearable wireless body sensor network
.
2014 36th Annu Int Conf IEEE Eng Med Biol Soc EMBC 2014.
Published online
2014
:
586
589
. doi:
18.
Hailma. Josephine
Hope
.
An Iot Based Intelligent Medicine Box
.
Int J Comput Sci Mob Comput.
2015
;
4
(
10
):
186
191
.
19.
Basanta
H.
,
Huang
Y.P.
,
Lee
T.T.
Intuitive IoT-based H2U healthcare system for elderly people
.
ICNSC 2016 - 13th IEEE Int Conf Networking, Sens Control
. Published online
2016
:
2
7
. doi:
20.
Pinto
S.
,
Cabral
J.
,
Gomes
T.
We-care: An IoT-based health care system for elderly people
.
Proc IEEE Int Conf Ind Technol.
Published online
2017
:
1378
1383
. doi:
21.
Li
C.
,
Hu
X.
,
Zhang
L.
The IoT-based heart disease monitoring system for pervasive healthcare service
.
Procedia Comput Sci.
2017
;
112
:
2328
2334
. doi:
22.
Putra
I.P.E.S.
,
Brusey
J.
,
Gaura
E.
,
Vesilo
R.
An event-triggered machine learning approach for accelerometer-based fall detection
.
Sensors (Switzerland)
.
2018
;
18
(
1
):
1
18
. doi:
23.
Siregar
B.
,
Andayani
U.
,
Bahri
R.P.
, Seniman,
Fahmi
F.
Real-time monitoring system for elderly people in detecting falling movement using accelerometer and gyroscope
.
J Phys Conf Ser.
2018
;
978
(
1
). doi:
24.
Yeotkar
H.
,
Gaikwad
V.
Iot Based Human Body Parameters Monitoring By Using Wearable Wireless Sensor Network
. Published online
2019
. https://www.academia.edu/download/60492373/IRJET-V6I735920190905-25494-xsp4xj.pdf
25.
Bernadus
T.F.
,
Subekti
L.B.
,
Bandung
Y.
IoT-Based Fall Detection and Heart Rate Monitoring System for Elderly Care
.
Proceeding - 2019 Int Conf ICT Smart Soc Innov Transform Towar Smart Reg ICISS 2019.
Published online
2019
. doi:
26.
Patel
W.
,
Patel
C.
,
Ramani
B.
,
Bhaskar
S.
,
Patel
M.
VitaFALL: NXTGeUH System for Well-Being Monitoring with Fall Recognition and Real-Time Vital Sign Monitoring
.
Int J Recent Technol Eng.
2020
;
8
(
5
):
5139
5145
. doi:
27.
Sundarsingh
E.F.
,
Saraswathi
V.
,
Sankareshwari
S.
,
Sona
S.
Fall detection smart-shoe enabled with wireless IoT device
.
Circuit World.
2020
;
47
(
4
):
325
334
28.
Al-Kababji
A.
,
Amira
A.
,
Bensaali
F.
,
Jarouf
A.
,
Shidqi
L.
,
Djelouat
H.
An IoT-based framework for remote fall monitoring
.
Biomed Signal Process Control.
2021
;
67
(
August 2020
):
102532
. doi:
29.
Al Bassam
N.
,
Hussain
S.A.
,
Al Qaraghuli
A.
,
Khan
J.
,
Sumesh
E.P.
,
Lavanya
V.
IoT based wearable device to monitor the signs of quarantined remote patients of COVID-19
.
Informatics Med Unlocked.
2021
;
24
(
April
):
100588
. doi:
30.
Luna-Perejón
F.
,
Muñoz-Saavedra
L.
,
Castellano-Domínguez
J.M.
,
Domínguez-Morales
M.
IoT garment for remote elderly care network
.
Biomed Signal Process Control.
2021
;
69
(
February
). doi:
This content is only available via PDF.
You do not currently have access to this content.