The breakdown of the Hemoglobin (Hb) generates a high level of bilirubin (a yellow-orange bile pigment.). Consequently, the whites of the eyes, skin, and mucous membranes turn yellow. The increase in the bilirubin level in the blood serum can be used as a biomarker for various liver disorders. Various methods have been used to determine the level of bilirubin. For clinical analytical purposes, several methods have been used such as spectrophotometry. High-performance liquid chromatographic, and thin-layer. However, these conventional procedures are invasive, costly, and time-consuming as well as require an expert person to operate. To overcome these limitations, image processing has been used on a large scale. This review study presents the various types of image processing algorithms that have been used to monitor the level of bilirubin. The comparison of the state of art studies based on methods, subjects, producers and algorithms as well as their future perspectives are discussed.

1.
D. P. V.
Puppalwar
, “
Review on ‘Evolution of Methods of Bilirubin Estimation,’
IOSR J. Dent. Med. Sci.
, vol.
1
, no.
3
, pp.
17
28
,
2012
, doi: .
2.
G. J.
Diaz
, “
Validation of a new smartphone app to assess neonatal jaundice in a Mexican population
.,” no.
May
,
2019
.
3.
Y. Y.
Chee
,
P. H. Y.
Chung
,
R. M. S.
Wong
, and
K. K. Y.
Wong
, “
Jaundice in infants and children: Causes, diagnosis, and management
,”
Hong Kong Med. J.
, vol.
24
, no.
3
, pp.
285
292
,
2018
, doi: .
4.
F. Akmal
Dzulkifli
,
M. Yusoff
Mashor
, and
K.
Khalid
, “
Methods for Determining Bilirubin Level in Neonatal Jaundice Screening and Monitoring: A Literature Review Automated Ki67 Counting for Brain Tumour Grading View project Paediatrics and Child Health View project Methods for Determining Bilirubin Level in N
,”
J. Eng. Res. Educ.
, vol.
10
, no.
December
,
2018
, [Online]. Available: https://www.researchgate.net/publication/329906308.
5.
S.
Swarna
,
S.
Pasupathy
,
B.
Chinnasami
, N. M. D., and
B.
Ramraj
, “
The smart phone study: assessing the reliability and accuracy of neonatal jaundice measurement using smart phone application
,”
Int. J. Contemp. Pediatr.
, vol.
5
, no.
2
, p.
285
,
2018
, doi: .
6.
S.
Leartveravat
, “
By Digital
,” vol.
24
, no.
1
, pp.
105
118
.
7.
A. A.
Tooley
and
S.
Sweetser
, “
Clinical Examination: Eyes
,” vol.
7
, no.
6
, pp.
154
157
,
2016
.
8.
U. N. S.
Devi
, “
Jaundice Detection using Image Processing
,”
Int. J. Res. Appl. Sci. Eng. Technol.
, vol.
7
, no.
10
, pp.
212
218
,
2019
, doi: .
9.
R. R.
Provine
,
M. O.
Cabrera
, and
J.
Nave-Blodgett
, “
Red, Yellow, and Super-White Sclera: Uniquely Human Cues for Healthiness, Attractiveness, and Age
,”
Hum. Nat.
, vol.
24
, no.
2
, pp.
126
136
,
2013
, doi: .
10.
M. A.
Perazella
,
E.
Keitel
, and
S. B.
Leite
, “
Utility of a urine sediment score in hyperbilirubinemia / hyperbilirubinuria
,” no.
July
,
2019
, doi: .
11.
K. F.
Foley
and
J.
Wasserman
, “
Are unexpected positive dipstick urine bilirubin results clinically significant? A retrospective review
,”
Lab Med.
, vol.
45
, no.
1
, pp.
59
61
,
2014
, doi: .
12.
H. J.
Verkade
et al, “
Biliary atresia and other cholestatic childhood diseases: Advances and future challenges
,”
J. Hepatol.
, vol.
65
, no.
3
, pp.
631
642
,
2016
, doi: .
13.
M. N.
Mansor
et al, “
Jaundice in newborn monitoring using color detection method
,”
Procedia Eng.
, vol.
29
, pp.
1631
1635
,
2012
, doi: .
14.
M. S.
Jarjees
,
S.
Salim
,
M.
Sheet
, and
B. T.
Ahmed
, “
Leukocytes identification using augmentation and transfer learning based convolution neural network
,” vol.
20
, no.
2
, pp.
314
321
,
2022
, doi: .
15.
A.
Vuckovic
,
V. J. F.
Gallardo
,
M.
Jarjees
,
M.
Fraser
, and
M.
Purcell
, “
Prediction of central neuropathic pain in spinal cord injury based on EEG classifier
,”
Clin. Neurophysiol.
, vol.
129
, no.
8
, pp.
1605
1617
,
2018
, doi: .
16.
M. J.
Mohammed
,
E. A.
Mohammed
, and
M. S.
Jarjees
, “
Recognition of multifont English electronic prescribing based on convolution neural network algorithm
,”
Bio-Algorithms and Med-Systems
, vol.
16
, no.
3
, pp.
1
8
,
2020
, doi: .
17.
S. S. Mohammed
Sheet
et al, “
Cotton-wool spots, red-lesions and hard-exudates distinction using CNN enhancement and transfer learning
,”
Indones. J. Electr. Eng. Comput. Sci.
, vol.
23
, no.
2
, pp.
1170
1179
,
2021
, doi: .
18.
S. S. M.
Sheet
,
T. S.
Tan
,
M. A.
As’ari
,
W. H. W.
Hitam
, and
J. S. Y.
Sia
, “
Retinal disease identification using upgraded CLAHE filter and transfer convolution neural network
,”
ICT Express
, vol.
8
, no.
1
, pp.
142
150
,
2022
, doi: .
19.
M. N.
Mansor
,
M.
Hariharan
,
S. N.
Basah
, and
S.
Yaacob
, “
New newborn jaundice monitoring scheme based on combination of pre-processing and color detection method
,”
Neurocomputing
, vol.
120
, pp.
258
261
,
2013
, doi: .
20.
J.
Castro-Ramos
,
C.
Toxqui-Quitl
,
F. Villa
Manriquez
,
E.
Orozco-Guillen
,
A.
Padilla-Vivanco
, and
J.
Sánchez-Escobar
, “
Detecting jaundice by using digital image processing
,”
Three-Dimensional Multidimens. Microsc. Image Acquis. Process. XXI
, vol.
8949
, no.
February
, p.
89491U
,
2014
, doi: .
21.
L.
De Greef
et al, “
BiliCam: Using mobile phones to monitor newborn jaundice
UbiComp 2014 - Adjun. Proc. 2014 ACM Int. Jt. Conf. Pervasive Ubiquitous Comput.
, pp.
39
41
,
2014
, doi: .
22.
A.
Gupta
,
A.
Kumar
, and
P.
Khera
,
Gupta
A
,
Kumar
A
,
Khera
P.
Method and Model for Jaundice Prediction Through Non-Invasive Bilirubin Detection Technique
.”
International Journal of Engineering Research and Technology 2015; 4: 34-38.
, vol.
4
, no.
08
, pp.
34
38
,
2015
.
23.
N.
Saini
,
A.
Kumar
, and
P.
Khera
, “
Non-Invasive Bilirubin Detection Technique for Jaundice Prediction Using Smartphones
,”
Int. J. Comput. Sci. Inf. Secur.
, vol.
14
, no.
8
, pp.
1060
1065
,
2016
, [Online]. Available: internal-pdf://146.26.74.182/Non-Invasive_Bilirubin_Detection_Techniq.pdf.
24.
M.
Aydın
,
F.
Hardalaç
,
B.
Ural
, and
S.
Karap
, “
Neonatal Jaundice Detection System
,”
J. Med. Syst.
, vol.
40
, no.
7
, pp.
1
11
,
2016
, doi: .
25.
J. A.
Taylor
et al, “
Use of a smartphone app to assess neonatal jaundice
,”
Pediatrics
, vol.
140
, no.
3
,
2017
, doi: .
26.
S. B.
Munkholm
,
T.
Krøgholt
,
F.
Ebbesen
,
P. B.
Szecsi
, and
S. R.
Kristensen
, “
The smartphone camera as a potential method for transcutaneous bilirubin measurement
,”
PLoS One
, vol.
13
, no.
6
, pp.
1
11
,
2018
, doi: .
27.
P.
Padidar
et al, “
Detection of neonatal jaundice by using an android OS-based smartphone application
,”
Iran. J. Pediatr.
, vol.
29
, no.
2
,
2019
, doi: .
28.
S.
Kawano
,
T. T.
Zin
, and
Y.
Kodama
, “
A Study on Non-contact and Non-invasive Neonatal Jaundice Detection and Bilirubin Value Prediction
,”
2018 IEEE 7th Glob. Conf. Consum. Electron. GCCE 2018
, pp.
204
205
,
2018
, doi: .
29.
A.
Aune
,
G.
Vartdal
,
H.
Bergseng
,
L. L.
Randeberg
, and
E.
Darj
, “
Bilirubin estimates from smartphone images of newborn infants’ skin correlated highly to serum bilirubin levels
,”
Acta Paediatr. Int. J. Paediatr.
, vol.
109
, no.
12
, pp.
2532
2538
,
2020
, doi: .
30.
W.
Hashim
,
A.
Al-Naji
,
I. A.
Al-Rayahi
, and
M.
Oudah
, “
Computer Vision for Jaundice Detection in Neonates Using Graphic User Interface
,”
IOP Conf. Ser. Mater. Sci. Eng.
, vol.
1105
, no.
1
, p.
012076
,
2021
, doi: .
31.
E.
Juliastuti
,
V.
Nadhira
,
Y. W.
Satwika
,
N. A.
Aziz
, and
N.
Zahra
, “
Risk Zone Estimation of Newborn Jaundice Based on Skin Color Image Analysis
,”
Proc. 2019 6th Int. Conf. Instrumentation, Control. Autom. ICA 2019
, no.
August
, pp.
176
181
,
2019
, doi: .
32.
S. M.
Moosavi
and
S.
Ghassabian
, “
Linearity of Calibration Curves for Analytical Methods: A Review of Criteria for Assessment of Method Reliability
,” in
Calibration and Validation of Analytical Methods - A Sampling of Current Approaches
,
2017
, pp.
109
127
.
This content is only available via PDF.
You do not currently have access to this content.