This article investigated the effect of nanoparticles (Cu/DW) on the thermal performance of a solar vacuum collector, as nanofluids are characterized by high thermic conductivity. The Cu nanoparticles used had a diameter of 30 nm with three different volume fractions of 1,3 and 5% vol nanoparticles examined at different flow rates of 30, 50, and 60 L/min. The tests were conducted in the city of Baghdad, Iraq, at a longitude of 44° 14′ E and latitude of 33° 33′ N. The results presented that the volumetric fraction of 5 vol% nanoparticles at a flow rate of 60 L/min achieves the maximum useful heat gain. The data showed that adding more nanoparticles improved the thermal efficiency of the evacuated solar tube. The improvement results of ETSC at a flow rate of 60 L/min increase to 19.69% for the volume fraction of nanoparticles of 5% vol. In contrast, the improvement rate of distilled water was 4.03% for the same flow assessment. According to the findings, the temperature difference and absorbed energy increased when nanoparticles were used.

1.
H.
Olfian
,
S. S. M.
Ajarostaghi
, and
M.
Ebrahimnataj
, “
Development on evacuated tube solar collectors: A review of the last decade results of using nanofluids
,”
Sol. Energy
, vol.
211
, no.
September
, pp.
265
282
,
2020
, doi: .
2.
H. S.
Anead
,
K. F.
Sultan
, and
S. Abdul
Jabbar
, “
Assessing the performance of the evacuated tube solar collector using smart curtain through (PSO based PID) controller and Nano fluids
,”
Eng. Technol. J.
, vol.
39
, no.
1A
, pp.
137
152
,
2021
, doi: .
3.
P. Akademia
Baru
,
M. M.
Jamil
,
N. A. C.
Sidik
, and
M. N. A. W. M.
Yazid
, “
Thermal Performance of Thermosyphon Evacuated Tube Solar Collector using TiO 2 /Water Nanofluid
,”
J. Adv. Res. Fluid Mech. Therm. Sci. ISSN
, vol.
20
, no.
1
, pp.
12
29
,
2016
.
4.
S.
Yan
,
F.
Wang
,
Z. G.
Shi
, and
R.
Tian
, “
Heat transfer property of SiO2/water nanofluid flow inside solar collector vacuum tubes
,”
Appl. Therm. Eng.
, vol.
118
, pp.
385
391
,
2017
, doi: .
5.
A. A.
Eidan
,
A.
AlSahlani
,
A. Q.
Ahmed
,
M.
Al-fahham
, and
J. M.
Jalil
, “
Improving the performance of heat pipe-evacuated tube solar collector experimentally by using Al2O3 and CuO/acetone nanofluids
,”
Sol. Energy
, vol.
173
, no.
August
, pp.
780
788
,
2018
, doi: .
6.
M. S.
Dehaj
and
M. Z.
Mohiabadi
, “
Experimental investigation of heat pipe solar collector using MgO nanofluids
,”
Sol. Energy Mater. Sol. Cells
, vol.
191
, no.
October 2018
, pp.
91
99
,
2019
, doi: .
7.
S. M. S.
Hosseini
and
M. Shafiey
Dehaj
, “
Assessment of TiO2 water-based nanofluids with two distinct morphologies in a U type evacuated tube solar collector
,”
Appl. Therm. Eng.
, vol.
182
, no.
September 2020
, p.
116086
,
2021
, doi: .
8.
N.
Majeed
,
K.
Sultan
, and
H.
Anead
, “
A Practical Study of The Thermal Performance of a Vacuum Tube For Solar Collector Using a Double-Sided Electronic Curtain With Nano-Fluid
,”
Eng. Technol. J.
, vol.
39
, no.
9
, pp.
1399
1408
,
2021
, doi: .
9.
H. J.
Rashid
,
K. F.
Sultan
, and
H. S.
Anead
, “
Thermal Performance of an Evacuated-Tube Solar Collector Using Nanofluids and an Electrical Curtain Controlled by an Artificial Intelligence Technique
,” vol.
40
, no.
February 2021
, pp.
8
19
,
2022
.
10.
M. A.
Sharafeldin
and
G.
Gróf
, “
Efficiency of evacuated tube solar collector using WO3/Water nanofluid
,”
Renew. Energy
, vol.
134
, pp.
453
460
,
2019
, doi: .
11.
K. F.
Sultan
,
H. S.
Anead
, and
S. A.
Jabber
, “
The Nano Fluid Effect on the Plethora of Thermal Efficiency in Evacuated Tube Solar Collector
,”
IOP Conf. Ser. Mater. Sci. Eng.
, vol.
978
, no.
1
,
2020
, doi: .
12.
D. Anin
Vincely
and
E.
Natarajan
, “
Experimental investigation of the solar FPC performance using graphene oxide nanofluid under forced circulation
,”
Energy Convers. Manag.
, vol.
117
, pp.
1
11
,
2016
, doi: .
13.
S.
Hamidi
, “
An Experimental Investigation on Thermal Efficiency of Flat Plate Tube Solar Collector using Nanofluid with Solar Tracking Mechanism
,”
Eng. Technol. J.
, vol.
37
, no.
11A
, pp.
475
487
,
2019
, doi: .
14.
A.
Elminshawy
,
K.
Morad
,
N. A. S.
Elminshawy
, and
Y.
Elhenawy
, “
Performance enhancement of concentrator photovoltaic systems using nanofluids
,”
Int. J. Energy Res.
, vol.
45
, no.
2
, pp.
2959
2979
,
2021
, doi: .
15.
M. H. S.
Bargal
et al, “
Experimental investigation of the thermal performance of a radiator using various nanofluids for automotive PEMFC applications
,”
Int. J. Energy Res.
, vol.
45
, no.
5
, pp.
6831
6849
,
2021
, doi: .
16.
L. S.
Sundar
,
M. K.
Singh
,
V.
Punnaiah
, and
A. C. M.
Sousa
, “
Experimental investigation of Al2O3/water nanofluids on the effectiveness of solar flat-plate collectors with and without twisted tape inserts
,”
Renew. Energy
, vol.
119
, pp.
820
833
,
2018
, doi: .
17.
S.
Hamidi
, “
A Novel Application for Parabolic Trough Solar Collector Based on Helical Receiver Tube and Nano-Fluid with a Solar Tracking Mechanism
,”
Eng. Technol. J.
, vol.
38
, no.
5
, pp.
656
668
,
2020
, doi: .
This content is only available via PDF.
You do not currently have access to this content.