For the past few decades, solar photovoltaics (PV) has been the solution for utilizing the potential of available solar energy. However, hybrid systems have been widely developed to improve the performance of Solar PV, including integrating it with wind turbines. In addition to compensating for solar PV panels’ ability to convert energy at a specific time, wind turbines have the potential to serve as a cooling medium for solar PV panels, improving the hybrid system’s energy efficiency. The hybrid Solar PV-Savonius wind turbine helix type system is identified in this article regarding its performance as a hybrid system and its potential as a solar PV panel cooling medium. In this case, the configuration and installation of the Solar PV-wind turbine hybrid system are analyzed to determine the parameters that affect the system’s performance. Furthermore, improvements for the system are examined to determine the potentials that can be enhanced to provide higher performance and energy efficiency in the hybrid system. Some of the parameters that can maximize the performance and energy efficiency of the Solar PV-wind turbine hybrid system are system layout configuration, wind concentrator, and winglet utilization. In this case, some of these factors are discussed in further detail to establish which Solar PV-wind turbine hybrid system parameters can be improved.

1.
K. A.
Moharram
,
M. S.
Abd-Elhady
,
H. A.
Kandil
, and
H.
El-Sherif
,
Ain Shams Eng. J.
4
, pp.
869
877
(
2013
).
2.
D.
Sato
and
N.
Yamada
,
Renew. Sustain. Energy Rev.
104
, pp.
151
166
(
2019
)
3.
C. H. B.
Apribowo
,
A.
Habibie
,
Z.
Arifin
, and
F.
Adriyanto
, "
Experimental method for improving efficiency on photovoltaic cell with using floating installation method
," in
The 5th International Conference on Industrial, Mechanical, Electrical, and Chemical Engineering 2019 (ICIMECE 2019)
,
AIP Conference Proceedings
2217
, edited by
w.
Sutopo
et al
(
AIP Publishing
,
Melville, NY
,
2020
), p
030190-1
030190-6
.
4.
Z.
Arifin
,
D. D. D. P.
Tjahjana
,
S.
Hadi
,
R. A.
Rachmanto
,
G.
Setyohandoko
, and
B.
Sutanto
,
Int. J. Photoenergy
2020
, (
2020
).
5.
G.
Setyohandoko
,
B.
Sutanto
,
R. A.
Rachmanto
,
D. D. Dwi Prija
Tjahjana
, and
Z.
Arifin
,
J. Adv. Res. Fluid Mech. Therm. Sci.
70
, pp.
97
105
(
2020
).
6.
Z.
Arifin
,
S.
Suyitno
,
D. D. D. P.
Tjahjana
,
W. E.
Juwana
,
M. R. A.
Putra
, and
A. R.
Prabowo
,
Appl. Sci.
10
, p.
7919
(
2020
).
7.
A.
Maleki
,
A.
Haghighi
,
M. El Haj
Assad
,
I.
Mahariq
, and
M. Alhuyi
Nazari
,
Sol. Energy
209
, pp.
170
185
(
2020
).
8.
I.
Guardian
,
B.
Sutanto
,
R. A.
Rachmanto
,
S.
Hadi
, and
Z.
Arifin
,
Lect. Notes Mech. Eng.
, pp.
437
448
(
2020
).
9.
H.
Belmili
,
R.
Cheikh
,
T.
Smail
,
N.
Seddaoui
, and
R. W.
Biara
,
Energy Procedia
136
, pp.
330
335
(
2017
).
10.
A.
Vergaerde
,
T.
De Troyer
,
A. Carbo
Molina
,
L.
Standaert
, and
M. C.
Runacres
,
J. Wind Eng. Ind. Aerodyn.
193
, (
2019
).
11.
B.
Hand
and
A.
Cashman
,
Sustain. Energy Technol. Assessments
38
, (
2020
).
12.
F. A.
Khan
,
N.
Pal
, and
S. H.
Saeed
,
Renewable and Sustainable Energy Reviews
92
. pp.
937
947
(
2018
).
13.
N.
Korprasertsak
and
T.
Leephakpreeda
,
J. Wind Eng. Ind. Aerodyn.
159
, pp.
9
18
(
2016
).
14.
C. J.
Bai
and
W. C.
Wang
,
Renew. Sustain. Energy Rev.
63
, pp.
506
519
(
2016
).
15.
G.
Abdalrahman
,
W.
Melek
, and
F. S.
Lien
,
Renew. Energy
114
, pp.
1353
1362
(
2017
).
16.
E.
Pinheiro
,
F.
Bandeiras
,
M.
Gomes
,
P.
Coelho
, and
J.
Fernandes
,
Renew. Sustain. Energy Rev.
110
, pp.
392
401
(
2019
).
17.
M.
Talaat
,
M. A.
Farahat
, and
M. H.
Elkholy
,
Energy
170
, pp.
668
682
(
2019
).
18.
Q.
Deltenre
,
T.
De Troyer
, and
M. C.
Runacres
,
Energy Build.
224
, p.
110137
(
2020
).
19.
A.
Das
,
H. K.
Jani
,
G.
Nagababu
, and
S. S.
Kachhwaha
,
Renew. Energy Focus
35
, pp.
108
121
(
2020
).
20.
K.
Doshi
and
V. S. K. V
Harish
,
Mater. Today Proc.
, (
2020
).
21.
A.
Buonomano
,
F.
Calise
,
M.
Dentice
, and
M.
Vicidomini
,
Energy
155
, pp.
174
189
(
2018
).
22.
P.
Spiru
and
P.
Lizica-simona
,
Energy Procedia
147
, pp.
343
350
(
2018
).
23.
J. A. F. de A.
Santos
,
P.
De Jong
,
C. A.
da Costa
, and
E. A.
Torres
,
Util. Policy
67
).
24.
D. H.
Kumar
,
R.
Krishna
,
M. D.
Kumar
,
R.
Pradhan
, and
M.
Sreenivasan
,
Mater. Today Proc.
33
, pp.
326
332
(
2020
).
25.
Y.
He
,
M.
Zhang
,
W.
Li
,
J.
Su
, and
K.
Kase
,
Energy
185
, pp.
585
598
(
2019
).
26.
H.
Mehrjerdi
,
Energy Convers. Manag.
205
, (
2019
).
27.
S.
Barakat
,
H.
Ibrahim
, and
A. A.
Elbaset
,
Sustain. Cities Soc.
60
, p.
102178
(
2020
).
28.
S.
Bhattacharjee
and
S.
Acharya
,
Energy Convers. Manag.
108
, pp.
219
232
(
2016
).
29.
P.
Yin
,
C.
Cheng
,
H.
Chen
, and
T.
Wu
,
Renew. Energy
157
, pp.
290
302
(
2020
).
30.
Z.
Alex
,
A.
Clark
,
W.
Cheung
,
L.
Zou
, and
P.
Jan
,
Energy Procedia
57
, pp.
1516
1525
(
2014
).
31.
H.
Bakir
and
A. A.
Kulaksiz
,
Eng. Sci. Technol. an Int. J.
23
, pp.
576
584
(
2020
).
32.
W.
Tjiu
,
T.
Marnoto
,
S.
Mat
,
M. H.
Ruslan
, and
K.
Sopian
,
Renew. Energy
75
, pp.
560
571
(
2015
).
33.
B. A.
Storti
,
J. J.
Dorella
,
N. D.
Roman
,
I.
Peralta
, and
A. E.
Albanesi
,
Energy
186
, p.
115814
(
2019
).
34.
Z.
Tasneem
et al,
Dev. Built Environ.
, p.
100033
(
2020
).
35.
X.
Ju
,
C.
Xu
,
X.
Han
,
X.
Du
,
G.
Wei
, and
Y.
Yang
,
Appl. Energy
187
, pp.
534
563
(
2017
).
36.
M.
Tahani
,
A.
Rabbani
,
A.
Kasaeian
,
M.
Mehrpooya
, and
M.
Mirhosseini
,
Energy
130
, pp.
327
338
(
2017
).
37.
A.
Damak
,
Z.
Driss
, and
M. S.
Abid
,
Renew. Energy
52
, pp.
136
142
(
2013
).
38.
Z.
Zhao
,
Y.
Zheng
,
X.
Xu
,
W.
Liu
, and
G.
Hu
, “
Research on the improvement of the performance of savonius rotor based on numerical study
”, in
1st Int. Conf. Sustain. Power Gener. Supply, IEEE Conference Proceedings
, (
IEEE
,
2009
), pp.
1
6
.
39.
B.
Patankar
,
R.
Tyagi
,
D.
Kiss
, and
A. B.
Suma
, "Evaluation of an Integrated Roof Wind Energy System for urban environments," in
The Science of Making Torque from Wind (TORQUE 2016)
,
J. Phys. Conf. Ser
.
753
, (
IOP Publishing
,
2016
).
40.
L.
Qi
,
P.
Zheng
,
X.
Wu
,
W.
Duan
,
L.
Li
, and
Z.
Zhang
,
Sol. Energy
208
, pp.
368
378
(
2020
).
41.
B.
Zhu
,
X.
Sun
,
Y.
Wang
, and
D.
Huang
,
Energy
10
, p.
094
(
2017
).
42.
M.
Khaled
,
M. M.
Ibrahim
,
H. E. Abdel
Hamed
, and
A. F.
AbdelGwad
,
Energy
187
, p.
115921
(
2019
).
43.
Y.
Ostovan
and
O.
Uzol
, “Experimental Study on the Effects of Winglets on the Performance of Two Interacting Horizontal Axis Model Wind Turbines,” in
The Science of Making Torque from Wind (TORQUE 2016)
,
J. Phys. Conf. Ser
.
753
, (
IOP Publishing
,
2016
).
44.
Umberto
Ravelli
and
Marco
Savini
,
J. Traffic Transp. Eng.
6
, pp.
155
163
(
2018
).
45.
A.
Abdul-Rahman
,
F.
Al-Failkawi
,
F.
Hasan
,
A.
Fatima
,
J.
Bin-Ali
, and
W.
Smew
, “
Formula one Front Wing Optimization and Configuration Modelling the Bending and Lift of a F1 Front Wing
,” in
International Conference on Industrial Engineering and Operations Management Bandung, Indonesia
, (
IEOM Society International
,
2018
), pp.
2866
2879
.
46.
X.
Castro
and
Z. A.
Rana
,
Fluids
5
, p.
237
(
2020
).
47.
A. R. S.
Azmi
,
A.
Sapit
,
A. N.
Mohammed
,
M. A.
Razali
,
A.
Sadikin
, and
N.
Nordin
, "
Study on airflow characteristics of rear wing of F1 car
," in
CFDRI 2017, IOP Conf. Ser. Mater. Sci. Eng.
243
, (IOP Publishing,
2017
).
48.
J.-J.
Tan
,
P.
Myler
, and
W.-A.
Tan
,
DEStech Trans. Eng. Technol. Res.
, (
2017
).
This content is only available via PDF.
You do not currently have access to this content.