In the present work, a novel technique was used to identify Sleep (SL), Wake (WA), Apnea (AP), Hypopnea (HY) and Onset-of-Apnea (OA) stages for Obstructive Sleep Apnea (OSA) subjects from full night monitoring of polysomnography (PSG) at sleep laboratories. In this methodology, present stages of an OSA subject during sleep can be identified using only single cycle of respiration signal, ECG signal and EEG signal during the respiration interval. A trajectory was formed by assigning these three signals into three orthogonal axes where the spatial distribution of the trajectory was found to be varied with the different stages of OSA subjects. The discriminating information regarding different stages was extracted from the spatial distribution by dividing the whole hyperspace into equal sized subspaces and the persistence of the trajectory in a particular subspace was considered as feature. Dimension reduction techniques Factor Analysis (FA) were investigated where three Factor Components (FCs) were identified. Our approach will help to understand how the integrated system behaves during different physiological functions. Further, it could provide a potential direction to understand the development of sleep related disorders including sleep apnea.

1.
American Academy of Sleep Medicine (AASM) Task Force
, “
Sleep-related breathing disorders in adults: Recommendations for syndrome definition and measurement techniques in clinical research
,”
Sleep
, vol.
22
, pp.
667
689
, Aug.
1999
.
2.
M. E.
Tagluk
,
M.
Akin
, and
N.
Sezgin
, “
Classification of sleep apnea by using wavelet transform and artificial neural networks
,”
Expert Systems with Applications
, vol.
37
, pp.
1600
1607
,
2010
.
3.
T.
Young
,
P.
Peprad
,
M.
Palta
,
K. M.
Hla
,
L.
Finn
,
B.
Morgan
, and
J.
Skatrud
, “
Population-based study of sleep-disordered breathing as a risk factor for hypertension
,”
Arch. Intern. Med.
, vol.
157
, pp.
1746
1752
,
1997
.
4.
T.
Young
,
M.
Palta
,
J.
Dempsey
,
J.
Skatrud
,
S.
Weber
, and
S.
Badr
, “
The occurrence of sleep-disordered breathing among middle-aged adults
,”
N. Engl. J. Med.
, vol.
328
, pp.
1230
1235
,
1993
.
5.
American Academy of Sleep Medicine Task Force
, “
Sleep-related breathing disorders in adults: Recommendations for syndrome definition and measurement techniques in clinical research
,”
Sleep
, vol.
22
, pp.
667
689
,
1999
.
6.
C.
Guilleminault
,
S. J.
Connolly
,
R.
Winkle
,
K.
Melvin
, and
A.
Tilkian
, “
Cyclical variation of the heart rate in sleep apnoea syndrome. Mechanisms and usefulness of 24 h electrocardiography as a screening technique
,”
Lancet
, vol.
1
, pp.
126
131
, Jan.
1984
.
7.
F.
Roche
,
J. M.
Gaspoz
,
I.
Court-Fortune
,
P.
Minni
,
V.
Pichot
,
D.
Duverney
,
F.
Costes
,
J. R.
Lacour
, and
J. C. Barth´eĹe
My
, “
Screening of obstructive sleep apnea syndrome by heart rate variability analysis
,”
Circulation
, vol.
100
, pp.
1411
1415
,
1999
.
8.
J. N.
Mcnames
and
A. M.
Fraser
, “
Obstructive sleep apnea classification based on spectrogram patterns in the electrocardiogram
,”
Comput. Cardiol.
, vol.
27
, pp.
749
752
,
2000
.
9.
Z.
Shinar
,
A.
Baharav
, and
S.
Akselrod
, “
Obstructive sleep apnea detection based on electrocardiogram analysis
,”
Comput. Cardiol.
, vol.
27
, pp.
757
760
,
2000
.
10.
M. J.
Drinnan
,
J.
Allen
,
P.
Langley
, and
A.
Murray
, “
Detection of sleep apnoea from frequency analysis of heart rate variability
,”
Comput. Cardiol.
, vol.
27
, pp.
259
262
,
2000
.
11.
M. R.
Jarvis
and
P. P.
Mitra
, “
Apnea patients characterized by 0.02 Hz peak in the multitaper spectrogram of electrocardiogram signals
,”
Comput. Cardiol.
, vol.
27
, pp.
769
772
,
2000
.
12.
T.
Penzel
,
J.
McNames
,
P.
de Chazal
,
B.
Raymond
,
A.
Murray
, and
G.
Moody
, “
Systematic comparison of different algorithms for apnoea detection based on electrocardiogram recordings
,”
Med. Biol. Eng. Comput.
, vol.
40
, pp.
402
407
,
2002
.
13.
J. E.
Mietus
,
C. K.
Peng
,
P.C.
Ivanov
and
A. L.
Goldberger
, “
Detection of obstructive sleep apnea from cardiac interbeat interval time series
,”
Comput. Cardiol.
, vol.
27
, pp.
753
756
,
2000
.
14.
F.
Roche
,
V.
Pichot
,
E.
Sforza
,
I.
Court-Fortune
,
D.
Duverney
,
F.
Costes
,
M.
Garet
, and
J.-C.
Barth´eĺemy
, “
Predicting sleep apnoea syndrome from heart period: A time-frequency wavelet analysis
,”
Eur. Respir. J.
, vol.
22
, pp.
937
942
,
2003
.
15.
H. M.
Al-Angari
and
A. V.
Sahakian
, “
Use of sample entropy approach to study heart rate variability in obstructive sleep apnea syndrome
,”
IEEE Trans. Biomed. Eng.
, vol.
54
, no.
10
, pp.
1900
1904
, Oct.
2007
.
16.
P.
De Chazal
,
C.
Heneghan
,
E.
Sheridan
,
R.
Reilly
,
P.
Nolan
, and
M.
O’Malley
, “
Automated processing of the single lead electrocardiogram for the detection of obstructive sleep apnoea
,”
IEEE Trans. Biomed. Eng.
, vol.
50
, no.
6
, pp.
686
696
, Jun.
2003
.
17.
N. F.
Garcia
,
P.
Gomis
,
A. La
Cruz
,
G.
Passeriello
, and
F.
Mora
, “
Bayesian hierarchical model with wavelet transform coefficients of the ECG in obstructive sleep apnea screening
,”
Comput. Cardiol.
, vol.
27
, pp.
275
278
,
2000
.
18.
A. H.
Khandoker
,
J.
Gubbi
, and
M.
Palaniswami
, “
Automated scoring of obstructive sleep apnea and hypopnea events using short-term electrocardiogram recordings
,”
IEEE Trans. Inf. Technol. Biomed. Eng.
, vol.
13
, no.
6
, pp.
1057
1067
, Nov.
2009
.
19.
Karthick Anand
Babu
, A.B. and
Sivakumar
,
R.
,
2015
.
Development of type 2 fuzzy rough ontology-based middleware for context processing in ambient smart environment
. In
Intelligent Computing and Applications: Proceedings of the International Conference on ICA
,
22-24 December
2014 (pp.
137
143
).
Springer
India
.
20.
M. O.
Mendez
,
A. M.
Bianchi
,
M.
Matteucci
,
S.
Cerutti
, and
T.
Penzel
, “
Sleep apnea screening by autoregressive models from a single ECG lead
,”
IEEETrans. Biomed. Eng.
, vol.
56
, no.
12
, pp.
2838
2850
, Dec.
2009
.
21.
A. H.
Khandoker
,
M.
Palaniswami
, and
C. K.
Karmakar
, “
Support vector machines for automated recognition of obstructive sleep apnea syndrome from ECG recordings
,”
IEEE Trans. Inf. Technol. Biomed. Eng.
, vol.
13
, no.
1
, pp.
37
48
, Jan.
2009
.
22.
P.
Várady
,
T.
Micsik
,
S.
Benedek
, and
Z.
Benyo
, “
A novel method for the detection of apnea and hypopnea events in respiration signals
,”
IEEE Trans. Biomed. Eng.
, vol.
49
, no.
9
, pp.
936
942
, Sep.
2002
.
23.
F. C.
Yen
,
K.
Behbehani
,
E. A.
Lucas
,
J. R.
Burk
, and
J. R.
Axe
, “
A nonnvasive technique for detecting obstructive and central sleep apnea
,”
IEEE Trans. Biomed. Eng.
, vol.
44
, no.
12
, pp.
1262
1268
, Dec.
1997
.
24.
O. F.
Romero
,
B. G.
Berdinas
,
A. A.
Betanzos
, and
V. M.
Bonillo
, “
A new method for sleep apnea classification using wavelets and feedforward neural networks
,”
Artif. Intell. Med.
, vol.
34
, pp.
65
76
,
2005
.
25.
D.
Liu
,
Z.
Pang
and
S. R.
Lloyd
, “
A neural network method for detection of obstructive sleep apnea and narcolepsy based on pupil size and EEG
,”
IEEE Trans. Biomed. Eng.
, vol.
19
, no.
2
, pp.
308
317
, Feb.
2008
.
26.
U. R.
Abeyratne
,
V.
Swarnkar
,
C.
Hukins
, and
B.
Duce
, “
Inter-hemispheric asynchrony correlates with severity of respiratory disturbance index in patients with sleep apnea
,”
IEEE Trans. Biomed. Eng.
, vol.
57
, no.
12
, pp.
2947
2955
, Dec.
2010
.
27.
C.-C.
Hsu
and
P.-T.
Shih
, “
A novel sleep apnea detection system in electroencephalogram using frequency variation
,”
Expert Systemswith Applications
, vol.
38
, no.
5
, pp.
6014
6024
, May.
2011
.
28.
N.
Sezgin
and
M. E.
Tagluk
, “
A new approach for estimation of obstructive sleep apnea syndrome
,”
Expert Systems with Applications
, vol.
38
, no.
5
, pp.
5346
5351
, May.
2011
.
29.
S. J.
Redmond
and
C.
heneghan
, “
Cardiorespiratory-based sleep staging in subjects with obstructive sleep apnea
,”
IEEE Trans. Biomed. Eng.
, vol.
53
, no.
3
, pp.
485
496
, Mar.
2006
.
30.
W.
Karlen
,
C.
Mattiussi
, and
D.
Floreano
, “
Sleep and wake classification with ECG and Respiratory effort signals
,”
IEEE Trans. Biomed. Circuits syst.
, vol.
3
, no.
2
, pp.
71
78
, Apr.
2009
.
31.
M.
Rechtschaffen
and
A.
Kales
,
Manual of Standardized Terminology, Techniques and Scoring System for Sleep Stages of Human Subjects
.
Los Angeles
:
UCLA Brain Information Services/Brain Research Institute
,
1968
.
32.
M. S.
Srivastava
,
Methods of Multivariate Statistics
.
New York
:
Wiley
,
2002
.
33.
A.
Basilevsky
,
Statistical Factor Analysis and Related Methods—Theory and Applications
.
New York
:
Wiley
,
1994
.
34.
G.
Goldberger
et al, “
Physiobank, physiotoolkit, and physionet: Components of a new research resource for complex physiologic signals
,”
Circulation
, vol.
101
, no.
23
, pp.
215
220
,
2000
.
35.
S.-C.
Pei
and
C.-C.
Tseng
, “
Elimination of ac interference in electrocardiogram using IIR notch filter with transient suppression
,”
IEEE Trans. Biomed. Eng.
, vol.
42
, no.
11
, pp.
1128
1132
, Nov.
1995
.
36.
G. M.
Friesen
,
T. C.
Jannett
,
M. A.
Jadallah
,
S. L.
Yates
,
S. R.
Quint
and
H. T.
Nagle
, “
A comparison of the noise sensitivity of nine QRS detection algorithms
,”
IEEE Trans. Biomed. Eng.
, vol.
37
, no.
1
, pp.
85
98
, Jan.
1990
.
37.
P. S.
Hamilton
and
W. J.
Tompkins
, “
Quantitative investigation of QRS detection rules using the MIT/BIH Arrhythmia database
,”
IEEE Trans. Biomed. Eng.
, vol.
BME-33
, no.
12
, pp.
1157
1165
, Dec.
1986
.
38.
J. M.
Lee
,
D. J.
Kim
,
I.-Y.
Kim
,
K.-S.
Park
, and
S. I.
Kim
, “
Detrended fluctuation analysis of EEG in sleep apnea using MIT/BIH polysomnography data
,”
Comput. Biol. Med.
, vol.
32
, p.
37
47
,
2002
.
39.
J. P. Marques
de Sa
,
Applied Statistics using Spss, Statistica, Matlab and R
. 2nd ed.
Springer
,
Berlin Heidelberg New York
,
2007
.
40.
“Matlab Statistical Toolbox 6, User’s Guide.”
[Online]. Available: http://www.mathworks.com
41.
A. P.
Dempster
,
N. M.
Laird
, and
D. B.
Rubin
, “
Maximum-likelihood from incomplete data via the EM algorithm
,”
J. R. Statist. Soc. Ser. B
, vol.
39
, no.
1
, pp.
1
38
,
1977
.
42.
AAMI, Association for the advancement of medical instrumentation
, “
Recommended practice for testing and reporting performance results of ventricular arrhythmia detection algorithms
,”
1986
.
This content is only available via PDF.
You do not currently have access to this content.