The primary goal of this study is to compare the performance of the Novel Random Forest (RF) algorithm, Decision Tree (DT), and Logistic Regression in forecasting loan default (LR). The 346-record loan dataset that Novel Random Forest is associated with. It has been suggested and assessed how well the revolutionary methods of Random Forest, Decision Tree, and Logistic Regression can forecast loan defaults in the banking and finance industry. There were a total of 17 participants in each study group. The classifier’s efficacy in terms of accuracy and precision is measured and documented. On this dataset, the Logistic Regression model predicts loan default with an accuracy of 81%, while the Decision Tree model achieves 93% and the Random Forest model achieves 95%. (p 0.031) is statistically significant. That’s why it’s clear that Novel Random Forest outperforms both Decision Tree and Logistic Regression. When compared to Decision Tree and Logistic Regression, Novel Random forest has superior accuracy and precision.

1.
E. C. e.
Silva
,
I. C.
Lopes
,
A.
Correia
, and
S.
Faria
, “
A logistic regression model for consumer default risk
,”
Journal of Applied Statistics
, vol.
47
, no.
13–15
. pp.
2879
2894
,
2020
. doi: .
2.
B.
Patel
,
H.
Patil
,
J.
Hembram
, and
S.
Jaswal
, “
Loan Default Forecasting using Data Mining
,”
2020 International Conference for Emerging Technology (INCET
).
2020
. doi: .
3.
A.
Coser
,
M. M.
Maer-Matei
, and
C.
Albu
, “
Predictive Models for Loan Default Risk Assessment
,”
ECONOMIC COMPUTATION AND ECONOMIC CYBERNETICS STUDIES AND RESEARCH
, vol.
53
, no.
2/2019
. pp.
149
165
,
2019
. doi: .
4.
H.
Zhang
et al, “
Application of Random Forest Classifier in Loan Default Forecast
,”
Communications in Computer and Information Science.
pp.
410
420
,
2020
. doi: .
5.
C.-C.
Chern
,
W.-U.
Lei
,
K.-L.
Huang
, and
S.-Y.
Chen
, “
A decision tree classifier for credit assessment problems in big data environments
,”
Information Systems and e-Business Management
, vol.
19
, no.
1
, pp.
363
386
, Feb.
2021
.
6.
I. O.
Eweoya
,
A. A.
Adebiyi
,
A. A.
Azeta
, and
A. E.
Azeta
, “
Fraud prediction in bank loan administration using decision tree
,”
J. Phys. Conf. Ser.
, vol.
1299
, no.
1
, p.
012037
, Aug.
2019
.
7.
H.
Cai
, “
Analysis of P2P Online Lending Default Based on Random Forest
,”
Journal of Physics: Conference Series
, vol.
1237
. p.
022046
,
2019
. doi: .
8.
A.
Al-qerem
,
G.
Al-Naymat
, and
M.
Alhasan
, “
Loan Default Prediction Model Improvement through Comprehensive Preprocessing and Features Selection
,”
2019 International Arab Conference on Information Technology (ACIT
).
2019
. doi: .
9.
Thangapandi
,
C.
,
Renganathan
,
K.
,
Muthukumar
,
S.
,
2020
.
Analytical solutions of non-linear boundary value problem for chemical reactions of enzyme substrate
.
Malaya Journal of Matematik (MJM)
, (
1
,
2020
), pp.
435
444
.
10.
M.
Madaan
,
A.
Kumar
,
C.
Keshri
,
R.
Jain
, and
P.
Nagrath
, “
Loan default prediction using decision trees and random forest: A comparative study
,”
IOP Conference Series: Materials Science and Engineering
, vol.
1022
. p.
012042
,
2021
. doi: .
11.
I.
Saraswathi
,
J.
Saikarthik
,
K. Senthil
Kumar
,
K. Madhan
Srinivasan
,
M.
Ardhanaari
, and
R.
Gunapriya
, “
Impact of COVID-19 outbreak on the mental health status of undergraduate medical students in a COVID-19 treating medical college: a prospective longitudinal study
,”
PeerJ
, vol.
8
, p.
e10164
, Oct.
2020
.
12.
A. S. S.
Girija
,
E. M.
Shankar
, and
M.
Larsson
, “
Could SARS-CoV-2-Induced Hyperinflammation Magnify the Severity of Coronavirus Disease (Co ViD-19) Leading to Acute Respiratory Distress Syndrome?
,”
Frontiers in immunology
, vol.
11
. p.
1206
, May 27,
2020
.
13.
S.
Chozhavendhan
,
M. Vijay Pradhap
Singh
,
B.
Fransila
,
R. Praveen
Kumar
, and
G. Karthiga
Devi
, “
A review on influencing parameters of biodiesel production and purification processes
,”
Current Research in Green and Sustainable Chemistry
, vol.
1–2
, pp.
1
6
, Feb.
2020
.
14.
A.
Mohan
,
S.
Karthika
,
J.
Ajith
,
L.
Dhal
, and
M.
Tholkapiyan
, “
Investigation on ultra high strength slurry infiltrated multiscale fibre reinforced concrete
,”
Materials Today: Proceedings
, vol.
22
, pp.
904
911
, Jan.
2020
.
15.
A. R. Pradeep
Kumar
et al, “
Diagnosis of Vertical Root Fractures by Cone-beam Computed Tomography in Root-filled Teeth with Confirmation by Direct Visualization: A Systematic Review and Meta-Analysis
,”
J. Endod.
, vol.
47
, no.
8
, pp.
1198
1214
, Aug.
2021
.
16.
S.
Dinesh
et al, “
Influence of wood dust fillers on the mechanical, thermal, water absorption and biodegradation characteristics of jute fiber epoxy composites
,”
J. Polym. Res.
, vol.
27
, no.
1
, p.
9
, Dec.
2019
.
17.
S.
Babu
and
S.
Jayaraman
, “
An update on β-sitosterol: A potential herbal nutraceutical for diabetic management
,”
Biomed. Pharmacother.
, vol.
131
, p.
110702
, Nov.
2020
.
18.
D.
Chandramohan
,
SD
Kumar
and
Sudhakar
M.
, ‘
Mechanical and thermal properties of Jute/alovera hybrid natural fiber reinforced composites
’,
AIP Conference Proceedings
2283
(
1
),
020084
, Oct
2020
.
19.
Dinesh Kumar
Singaravelu
, ‘
Diesel Engine Performance on Chlorella vulgaris Biodiesel
’,
Journal of Scientific and Industrial Research, NISCAIR Publisher
, Vol.
79
, Issue
9
, Sep
2020
, pp.
843
845
,
2020
.
20.
Dinesh Kumar
Singaravelu
, ‘
Diesel Engine Emission Characteristics Study using Algae Biofuel
’,
Journal of Scientific and Industrial Research, NISCAIR Publisher
, Vol.
79
, Issue
6
, June
2020
, pp.
547
551
,
2020
.
21.
K.
Muthukumar
,
R.
Saravanan
and
V.
Dhinakaran
, ‘
Investigation on waste tyre oil with diesel for detection of density, Kinematic and dynamic viscosities evaluation of various combinations in volume basis
’,
AIP Conference Proceedings
2283
(
1
),
020123
, Oct
2020
.
22.
T.
Sathish
, ‘
Optimization of chlorella vulgaris Biodiesel usage in Diesel Engine
’,
Journal of Scientific and Industrial Research, NISCAIR Publisher
, Vol.
79
, Issue
8
, Aug
2020
, pp.
750
752
,
2020
.
23.
Karthick Anand
Babu
, A.B. and
Sivakumar
,
R.
,
2015
.
Development of type 2 fuzzy rough ontology-based middleware for context processing in ambient smart environment
. In
Intelligent Computing and Applications: Proceedings of the International Conference on ICA
, 22-24 December
2014
(pp.
137
143
).
Springer India
.
24.
V.
Shanmugam
et al, “
Fatigue behaviour of FDM-3D printed polymers, polymeric composites and architected cellular materials
,”
Int. J. Fatigue
, vol.
143
, no.
106007
, p.
106007
, Feb.
2021
.
25.
M.
Mehta
et al, “
Cellular signalling pathways mediating the pathogenesis of chronic inflammatory respiratory diseases: an update
,”
Inflammopharmacology
, vol.
28
, no.
4
, pp.
795
817
, Aug.
2020
.
26.
M.
Vairavel
,
E.
Devaraj
, and
R.
Shanmugam
, “
An eco-friendly synthesis of Enterococcus sp.-mediated gold nanoparticle induces cytotoxicity in human colorectal cancer cells
,”
Environ. Sci. Pollut. Res. Int.
, vol.
27
, no.
8
, pp.
8166
8175
, Mar.
2020
.
27.
L.
Zhu
,
D.
Qiu
,
D.
Ergu
,
C.
Ying
, and
K.
Liu
, “
A study on predicting loan default based on the random forest algorithm
,”
Procedia Computer Science
, vol.
162
. pp.
503
513
,
2019
. doi: .
28.
C.-Z.
Meng
,
B.-S.
Liu
, and
L.
Zhou
, “
The Practice Study of Consumer Credit Risk Based on Random Forest
,”
Proceedings of the 2019 International Conference on Modeling, Analysis, Simulation Technologies and Applications (MASTA 2019
).
2019
. doi: .
29.
I. O.
Eweoya
,
A. A.
Adebiyi
,
A. A.
Azeta
,
F.
Chidozie
,
F. O.
Agono
, and
B.
Guembe
, “
A Naive Bayes approach to fraud prediction in loan default
,”
Journal of Physics: Conference Series
, vol.
1299
. p.
012038
,
2019
. doi: .
This content is only available via PDF.
You do not currently have access to this content.