Survival analysis is a branch of statistics deals to analyze and model the time to event data. To tackle this censoring problem, statistical strategies have been widely explored in the literature. To deal with survival data, traditionally many methods including Nonparametric, Semiparametric, Parametric and Bayesian Models were incorporated. But these methods require some assumptions, but many machine learning techniques (Survival Decision Tree, Survival Random Forest, Naive Bayes and Logistic Regression) are designed to handle survival data and other challenges that may emerge in real-time data. In this paper, the author elaborates significance of these methods for survival data and identified important variables for the specified event for three real time data. Important variables were prioritized using random forest’s variable selection methods, and the results were compared to survival approaches. Supervised Machine Learning Methods were applied, and survival analysis was used to validate them.

1.
A.
Liaw
,
M.
Wiener
.
Classification and regression by random
Forest. R News
, (
2002
),
2
(
3
):pp:
18
22
.
2.
A.
Paluszynska
,
P.
Biecek
,
randomForestExplainer: Explaining and Visualizing Random Forests in Terms of Variable Importance
. In:
R package version
0.9
; (
2017
).
3.
B.
Eftekhar
,
K.
Mohammad
,
H. E.
Ardebili
,
M.
Ghodsi
,
E.
Ketabchi
,
Comparison of artificial neural network and logistic regression models for prediction of mortality in head trauma based on initial clinical data
.
BMC Med Inform Decis Mak
, (
2005
);
5
(
1
):
3
.
4.
Chen
W.
,
Xie
X.
,
Wang
J.
,
Pradhan
B.
,
Hong
H.
,
Tien
D.
, et al.
A comparative study of logistic model tree, random forest, and classification and regression tree models for spatial prediction of landslide susceptibility
.
Catena
, (
2017
);
151
:pp:
147
60
.
5.
D.
Muchlinski
,
D.
Siroky
,
M.
Kocher
,
Comparing random Forest with logistic regression for predicting class-imbalanced civil war onset data
.
Polit Anal
, (
2016
);
24
(
1
):pp:
87
103
.
6.
D. R.
Cox
,
Regression Models and Life-Tables
,
Journal of the Royal Statistical Society Series B (Methodological)
, (
1972
);
34
(
2
): pp:
187
220
. http://links.jstor.org/sici?sici=0035-9246(1972)34:2<187:RMAL>2.0.CO;2-6.
7.
E. L.
Kaplan
,
P.
Meier
,
Nonparametric estimation from incomplete observations
.
Journal of the American Statistical Assocation. Nov
, (
1958
),
53
(
282
): pp:
457
481
. http://www.jstor.org/stable/10.2307/2281868 http://www.jstor.org/pss/2281868.
8.
G.
Sudhamathy
,
M.
Thilagu
,
G.
Padmavathi
,
Comparative analysis of R package classifiers using breast cancer dataset
.
Int J Eng Technol
, (
2016
);
8
:pp:
2127
36
.
9.
H.
Ishwaran
and
U. B.
Kogalur
,
Random survival forests for R. Rnews
, (
2007
), pp:
725
31
.
10.
H.
Ishwaran
and
U. B.
Kogalur
,
RandomSurvivalForest 3.2.2. R package
, (
2008
), Available at http://cran.r-project.org.
11.
H.
Ishwaran
,
E. H.
Blackstone
,
C. A.
Apperson
and
T. W.
Rice
,
A novel data driven approach to stage grouping of esophageal cancer
.
Cleveland Clinic technical report.
12.
H.
Ishwaran
,
U. B.
Kogalur
,
E. H.
Blackstone
, &
S. M.
Lauer
,
Random Survival Forests
.
The Annals of Applied Statistics
,
2
(
3
), (
2008
), pp:
841
860
. http://www.jstor.org/stable/30245111
13.
Klein
and
Moeschberger
, SURVIVAL ANALYSIS Techniques for Censored and Truncated Data,
Springer-Verlag New York, Inc
, (
2005
).
14.
Konstantinos G.
Liakos
et al.,
Machine Learning in Agriculture: A Review, Sensors
:
8
; (
2018
)
15.
L.
Breiman
,
Bagging predictors
,
Machine Learning
26
, (
1996
), pp:
123
140
.
16.
L.
Breiman
,
J. H.
Friedman
,
R. A.
Olshen
, and
C. J.
Stone
,
Classification and Regression Trees
,
Wadsworth
,
Belmont, California
, (
1984
), MR0726392.
17.
L.
Breiman
,
Manual—setting up, using and understanding random forests V4.0
, (
2003
), Available at ftp://ftp.stat.berkeley.edu/pub/users/breiman/Usingrandomforestsv4.0.pdf.
18.
L.
Breiman
,
Random forests
.
Machine Learning
45
, (
2001
), pp:
5
32
.
19.
L.
Breiman
,
Software for the masses
.
Slides presented at the Wald Lectures, Meeting of the Institute of Mathematical Statistics
,
Banff, Canada
, (
2002
), Available at http://www.stat.berkeley.edu/users/breiman.
20.
M.
Khalilia
,
S.
Chakraborty
,
M.
Popescu
.
Predicting disease risks from highly imbalanced data using random forest
.
BMC Med Inform Decis Mak.
(
2011
);
11
(
1
):
51
.
21.
M.
Ture
,
F.
Tokatli
,
I.
Kurt
,
Using Kaplan-Meier analysis together with decision tree methods (C&RT, CHAID, QUEST, C4.5 and ID3) in determining recurrence-free survival of breast cancer patients
.
Expert Syst Appl.
(
2009
);
36
(
2
):pp:
2017
26
.
22.
R Core Team
, R: a language and environment for statistical computing.
R Foundation for statistical computing
,
Vienna, Austria
, (
2018
), URL https://www.R-project.org/.
23.
R.
Genuer
,
J. M.
Poggi
,
C. T.
Malot
,
VSURF: Variable Selection Using Random Forests
. In:
R package version 1.0.4
; (
2018
).
24.
T.
Therneau
,
B.
Atkinson
,
rpart: Recursive Partitioning and Regression Trees
.
R version
4
.
1
13
; (
2018
).
25.
Wei
J.
,
Wang
J.
,
Zhu
Y.
,
Sun
J.
,
Xu
H.
,
Li
M.
Traditional Chinese medicine pharmacovigilance in signal detection: decision tree-based data classification
.
BMC Med Inform Decis Mak
, (
2018
);
18
(
1
):
19
.
26.
X.
Song
,
A.
Mitnitski
,
J.
Cox
,
K.
Rockwood
.
Comparison of machine learning techniques with classical statistical models in predicting health outcomes
.
Medinfo.
(
2004
);
11
(
1
): pp:
736
740
.
27.
Y.
Chen
,
W.
Cao
,
X.
Gao
,
H.
Ong
,
T.
Ji
,
Predicting postoperative complications of head and neck squamous cell carcinoma in elderly patients using random forest algorithm model
.
BMC Med Inform Decis Mak
,(
2015
);
15
:
44
.
28.
John
Adeoye
et al,
Prediction models applying machine learning to oral cavity cancer outcomes: A systematic review
,
International Journal of Medical
(
2021
),
(154)
.
This content is only available via PDF.
You do not currently have access to this content.