We are concerned with a subclass of piecewise-deterministic Markov processes (PDMPs) that evolve on a Polish space through random jumps at exponentially distributed time intervals, while the behaviour between jumps is governed by a finite collection of flows, selected randomly at the jump times. The main goal of this paper is to provide a set of conditions sufficient for the exponential ergodicity of the corresponding transition semigroup in terms of the bounded Lipschitz distance.

1.
M.
Benaïm
et al.,
Ann. Inst. Henri Poincaré Probab. Stat.
51
,
1040
1075
(
2015
).
2.
M.
Benaïm
,
T.
Hurth
, and
E.
Strickler
,
Electron. Commun. Probab.
23
,
1
12
(
2018
).
3.
F.
Dufour
and
O.
Costa
,
SIAM J. Control Optim.
37
,
1483
1502
(
1999
).
4.
D.
Czapla
,
K.
Horbacz
, and
H.
Wojewódka-Ściążko
,
Stoch. Proc. Appl.
130
,
2851
2885
(
2020
).
5.
M.
Hairer
,
Probab
.
Theory Related Fields
124
,
345
380
(
2002
).
6.
B.
Cloez
and
M.
Hairer
,
Bernoulli
21
,
505
536
(
2015
).
7.
R.
Dudley
,
Studia Math.
27
,
251
268
(
1966
).
8.
D.
Czapla
,
K.
Horbacz
, and
H.
Wojewódka-Ś ciążko
,
J. Math. Anal. Appl.
484
, p.
123725
(
2020
).
9.
R.
Kapica
and
M
.
Ślęczka
,
Probab. Math. Statist.
40
,
119
137
(
2020
)
This content is only available via PDF.
You do not currently have access to this content.