A modified Van der Pol oscillator has been proposed to describe a self-excited body sliding on a periodic potential. For this autonomous modified Van der Pol oscillator, we propose the Optimal Homotopy Asymptotic Method (OHAM) to obtain explicit and highly accurate approximate solutions. Our technique ensures a fast convergence of the solutions independent of the presence of small parameters in the governing equations.

1.
B.
Vander Pol
,
Philos. Mag.
7
,
978
992
(
1926
).
2.
A.H.
Nayfeh
and
D.T.
Mook
,
Nonlinear oscillations
(
Wiley
,
New York
,
1979
).
3.
M.N.
D’Acunto
,
Mech. Res. Commun.
33
,
93
98
(
2006
).
4.
V.
Marinca
,
Gh.
Draganescu
,
Nonlin. Anal. Real World Appl.
11
,
4355
4362
(
2010
).
5.
N.
Herisanu
,
V.
Marinca
,
Int. J. Non-linear Sci. Numer. Simul.
,
10
(
3
),
353
361
(
2009
)
7.
G.M.
Moremedei
,
D.P.
Mason
,
V.M.
Gorringe
,
Int. J. Non-linear Mec.
28
,
237
250
(
1993
).
8.
N.
Herisanu
,
V.
Marinca
,
G.
Madescu
,
AIP Conference Proceedings
,
1863
, Art.No.460002 (
2017
)
9.
V.
Marinca
,
N.
Herisanu
,
AIP Conference Proceedings
,
2116
, Art.No.300003(
2019
)
10.
N.
Herisanu
,
V.
Marinca
,
MATEC Web of Conferences
,
148
, Art.No.13003 (
2018
)
11.
N.
Herisanu
,
V.
Marinca
,
Mathematics
,
8
(
7
), Art.No.1083 (
2020
)
12.
V.
Marinca
,
N.
Herisanu
,
Symmetry
,
12
(
8
), Art.No.1335 (
2020
)
This content is only available via PDF.
You do not currently have access to this content.