An analytic solution for the initiation of plastic yielding in a thin annular hyperbolic disk subject to thermomechanical loading is presented. It is assumed that the yield criterion is orthotropic. The principal axes of anisotropy coincide with the radial, circumferential, and axial directions. Two loading parameters control the process of deformation. One of these parameters is uniform pressure over the inner radius of the disk, and the other is temperature. The general qualitative structure of the solution at the initiation of plastic yielding is discussed in detail. It is shown that a plastic region may initiate at the inner or outer radii. Moreover, two plastic regions may initiate at the inner or outer radii simultaneously. Illustrative calculations deal with four materials whose properties are available in the literature.

1.
Yu. I.
Dimitrienko
,
IOP Conf. Ser.: Mater. Sci. Eng.
934
, №
012015
(
2020
).
2.
A.V.
Cherednichenko
,
E.A
Maksimova
and
I.Yu.
Savelyeva
,
IOP Conference Series: Materials Science and Engineering
, Volume
747
,
International Conference of Young Scientists and Students "Topical Problems of Mechanical Engineering" (ToPME-2019
)
4–6
December
2019
,
Moscow, Russia
.
3.
G.N.
Kuvyrkin
,
I.Y.
Savelyeva
,
V.S.
Zarubin
,
Estimations of the parameters of a thermal explosion in a triaxial ellipsoid Zeitschrift fur Angewandte Mathematik und Physik
,
71
(
4
), №
113
(
2020
).
4.
N.V.
Batanova
,
V.L.
Danilov
,
IOP Conference Series: Mater. Sci. Eng.
489
(
1
), №
012002
(
2019
).
5.
S.P.
Galkin
,
S.A.
Stebunov
,
A.S.
Aleschenko
,
A.V.
Vlasov
,
P.V.
Patrin
,
A.V.
Fomin
,
Metallurgist
,
64
(
3-4
), pp.
233
241
(
2020
).
6.
W.
Mack
and
M.
Bengeri
,
Int. J. Mech. Sci.
,
36
, pp.
699
705
(
1994
).
7.
M.
Bengeri
and
W. Mack
Fit
,
Acta Mech.
,
103
, pp.
243
257
(
1994
).
8.
O.
Sayman
and
Y.
Arman
,
J. Reinforced Plastics Composites
,
25
, pp.
1709
1722
(
2006
).
9.
A.
Alujevic
,
J.
Legat
and
J.
Zupec
,
ZAMM
,
73
, pp.
T283
T287
(
1993
).
10.
A.
Alujevic
,
J.
Legat
and
J.
Zupec
,
ZAMM
,
73
, pp.
T287
T290
(
1993
).
11.
C.
Parmaksizoglu
and
U.
Guven
,
Mech. Struct. Mach.
,
26
, pp.
9
20
(
1998
).
12.
A.N.
Eraslan
and
T.
Akis
,
Mech. Based Des. Struct. Mach.
,
31
, pp.
529
561
(
2003
).
13.
A.
Loghman
,
A.G.
Arani
,
Arch. Appl. Mech.
,
81
, pp.
1853
1864
(
2011
).
14.
S.
Alexandrov
,
E.
Lyamina
and
Y.-R.
Jeng
.,
Trans. ASME J. Appl. Mech.
,
80
(
5
), p.
051006
(
2013
).
16.
Hill
,
R.
:
The Mathematical Theory of Plasticity
.
Clarendon Press
.
Oxford
(
1950
).
17.
V.
Yıldırım
,
Parametric, Latin American Journal of Solids and Structures
,
15
(
4
),
34
(
2018
).
18.
E.
Demir
,
H.
Callioglu
,
M.
Sayer
,
Structural Engineering and Mechanics.
,
62
(
5
), pp.
587
593
(
2017
).
19.
H.
Argeso
,
A.N.
Eraslan
,
Int. J. Therm. Sci.
,
47
, pp.
136
146
(
2008
).
20.
S.
Alexandrov
,
E.
Lyamina
and
Y.-R.
Jeng
,
Math. Prob. Eng.
Article 709178 (
2012
).
21.
N.
Alexandrova
,
S.
Alexandrov
,
J. Appl. Mech.
,
71
,
427
429
(
2004
).
22.
S.
Bouvier
,
C.
Teodosiu
,
H.
Haddadi
,
V.
Tabacaru
,
J. Phys. Colloq
,
105
,
215
222
(
2003
).
This content is only available via PDF.
You do not currently have access to this content.