Due to the high carbonation capacity magnesium phosphate cement (MPC) is known as clinker-free and an eco-friendly material with lower environmental impact compared to Portland cement. Fast setting followed by high early strength connected with strongly exothermic reaction allows use the material for building and road repair works, retrofitting, repair of concrete runways, etc., conducted also at the temperatures below zero. The hydration reaction ongoing between dead burned magnesium oxide and potassium phosphate salt generates dense, highly durable microstructure. Fast setting characteristic for MPC is manifested by an early rapid strength rate and good volume stability. In this sense, this study is focused on the testing of strength parameters, basic structural characteristics, and thermal properties of magnesia-phosphate based composites with full replacement of silica sand with waste rubber and lightweight expanded glass. The obtained data shows perceptible decrease of thermal conductivity and volumetric heat capacity of samples with lightweight admixtures, while strength values are kept still satisfactory.

1.
L.
Chong
,
J.
Yang
,
C.
Shi
,
Constr. Build. Mater.
151
,
43
51
(
2017
).
2.
N.
José
,
H.
Ahmed
,
B.
Miguel
,
E.
Luis
,
B.
Jorge
,
Materials.
13
,
4752
(
2020
).
3.
L.
Yue
,
S.
Jia
,
Ch.
Bing
,
Constr. Build. Mater.
65
,
177
183
(
2014
).
4.
H.
Lahalle
,
C.C.D.
Coumes
,
C.
Mercier
,
D.
Lambertin
,
C.
Cannes
,
S.
Delpech
,
S.
Gauffinet
,
Cem. Concr. Res.
109
,
159
174
(
2018
).
5.
D.A
:
Hall
,
R.
Stevens
,
B.
El-Jazairi
,
Cem. Concr. Res.
31
,
455
465
(
2001
).
6.
J.
Yang
,
C.
Qian
,
J.
Wuhan
Univ. Technol. Mater. Sci. Ed. J.
25
,
613
618
(
2010
).
7.
L.J.
Gardner
,
S.A.
Bernal
,
S.A.
Walling
,
C.L.
Corkhill
,
J.L.
Provis
,
N.C.
Hyatt
,
Cem. Concr. Res.
74
,
78
87
(
2015
).
8.
M.
Sinka
,
P.V.
den Heede
,
N.D.
Belie
,
D.
Bajare
,
G.
Sahmenko
,
A.
Korjakins
,
Resour. Conserv. Recycl.
133
,
288
299
(
2018
).
9.
I.
El-Darwish
,
M.
Gomaa
,
Eng. J.
56
,
579
589
(
2017
).
10.
B.
Xu
,
H.
Ma
,
H.
Shao
,
Z.
Li
,
Cem. Concr. Res.
99
,
86
94
(
2017
).
11.
L.
Johansson
,
J.P.
Gustavsoson
,
Water Res.
34
,
259
265
(
2000
).
12.
M.
Záleská
,
Z.
Pavlík
,
D.
Čítek
,
O.
Jankovský
,
M.
Pavlíková
,
Constr. Buid. Mater.
225
,
709
722
(
2019
).
13.
EN 1015-2
,
Methods of test for mortar for masonry – Part 2: Bulk sampling of mortars and preparation of test mortars
,
European Committee for Standardization (CEN)
,
1999
.
14.
M.
Vysvaril
,
M.
Pavlikova
,
M.
Zaleska
,
A.
Pivak
,
T.
Zizlavsky
,
P.
Rovnanikova
,
P.
Bayer
,
Z.
Pavlik
,
Constr. Build. Mater.
263
,
120617
(
2020
).
15.
EN 1015-11
,
Methods of test for mortar for masonry - Part 11: Determination of Flexural and Compressive Strength of Hardened Mortar
,
European Committee for Standardization (CEN)
,
1999
.
This content is only available via PDF.
You do not currently have access to this content.