Stochastic volatility models with jumps generalize the classical Black–Scholes framework to capture more properly the real world features of option contracts. The extension is performed by incorporating jumps and a stochastic nature of volatility of asset returns into the dynamics of underlying asset prices. In this paper, we focus on pricing of European-style options under the model that combines the Heston stochastic volatility model with the Kou-type double exponential jumps in the underlying prices. As a result, the pricing function is governed by a partial-integro differential equation having the price of the underlying asset and its variance as spatial variables. Moreover, a presence of the non-local operator arising from jumps increases the complexity of the problem. Therefore, to improve the numerical pricing process we solve the relevant pricing equation by a discontinuous Galerkin approach with a semi-implicit time stepping scheme, where the differential operator is treated implicitly while the integral one explicitly by a composite trapezoidal rule. Finally, the numerical results demonstrate the capability of the numerical approach presented within the simple experiments.

1.
F.
Black
and
M.
Scholes
,
J. Polit. Econ.
81
,
637
659
(
1973
).
2.
L.
Bergomi
,
Stochastic Volatility Modeling
(
Chapman and Hall/CRC
,
Boca Raton
,
2016
).
3.
R.
Cont
and
P.
Tankov
,
Financial Modelling with Jump Processes
(
Chapman, Hall/CRC
,
Boca Raton
,
2004
).
4.
J.
Hozman
and
T.
Tichý
, “A discontinuous Galerkin method for numerical pricing of European options under Heston stochastic volatility,” in
AMEE ’16, AIP Conf. Proc 1789
, edited by
V.
Pasheva
,
N.
Popivanov
, and
G.
Venkov
(
American Institute of Physics
,
Melville, NY
,
2016
) p.
030003
.
5.
J.
Hozman
,
T.
Tichý
, and
M.
Vlasák
,
Appl. Math.
64
,
501
530
(
2019
).
6.
J.
Hozman
and
T.
Tichý
, “Option pricing under the Kou jump-diffusion model: A DG approach,” in
AMEE ’19, AIP Conf. Proc. 2172
, edited by
V.
Pasheva
,
N.
Popivanov
, and
G.
Venkov
(
American Institute of Physics
,
Melville, NY
,
2019
) p.
070011
.
7.
D. S.
Bates
,
Rev. Financ. Stud.
9
,
69
107
(
1996
).
8.
S.
Heston
,
Rev. Financ. Stud.
6
,
327
343
(
1993
).
10.
D.
Duffie
,
J.
Pan
, and
K.
Singleton
,
Econometrica
68
,
1343
1376
(
2000
).
11.
V.
Dolejš´ı
and
M.
Feistauer
,
Discontinuous Galerkin Method – Analysis and Applications to Compressible Flow
(
Springer
-
Verlag
,
2015
).
12.
R.
Cont
and
E.
Voltchkova
,
SIAM J. Numer. Anal.
43
,
1596
1626
(
2005
).
13.
J.
Hozman
and
T.
Tichý
,
J. Comput. Appl. Math.
344
,
585
600
(
2018
).
14.
J.
Hozman
and
T.
Tichý
,
Appl. Math.
62
,
171
195
(
2017
).
15.
F.
Hecht
,
J. Numer. Math.
20
,
251
265
(
2012
).
16.
F.
Kalsheker
, “
Option pricing models with stochastic volatility and jumps
,” Ph.D. thesis,
University of Cape Town
2009
.
This content is only available via PDF.
You do not currently have access to this content.