In the research, we will present a new and comprehensive study on the role of bioinformatics and data science in daily life applications and how to benefit from bioinformatics sciences and link them to other sciences, including mathematics, physics, genomics, computers, and analysis of big data that need software coordination that facilitates the work of health systems. On this basis, an application was studied on the bioinformatics of Covid-19 and how to organize the numbers of injured, deaths and isolated patients using remote control robots. In addition, some bioinformatics software and how were studied using different programming languages, and we applied one of these characteristics using the Matlab program.
REFERENCES
1.
Ritchie
M.D.
, Holzinger
E.R.
, Li
R.
, Pendergrass
S.A.
, et al. (2015
). Methods of integrating data to uncover genotype-phenotype interactions
. Nat. Rev. Genet.
16
: 85
–97
.2.
Pevsner
J.
(2015
). Bioinformatics and functional genomics
, 3rd ed. John Wiley & Sons Inc
, Chichester
.3.
Cohen
J.E.
Mathematics is biology’s next microscope, only better; biology is mathematics’ next physics, only better
. PLoS Biol
2004
;2
:2017
–23
e439.4.
Jungck
J.R.
Ten equations that changed biology: mathematics in problem-solving biology curricula
. Bioscene
1992
;23
: 11
–36
.5.
Larranaga
P
, Calvo
B
, Santana
R
,∼ et al. Machine learning in bioinformatics
. Brief Bioinformatics
2006
;7
(1
):86
–112
.6.
Shendure
J
, Ji
H.
Next-generation DNA sequencing
. Nat Biotechnol
2002
;26
:1135
–45
.7.
Farabet
C
, Couprie
C
, Najman
L
, et al. Learning hierarchical features for scene labeling
. IEEE Trans Pattern Anal Mach Intell
, 2013
;35
(8
):1915
–29
.8.
Farabet
C
, Couprie
C
, Najman
L
, et al. Learning hierarchical features for scene labeling
. IEEE Trans Pattern Anal Mach Intell
, 2013
;35
(8
):1915
–29
.9.
Kiros
R
, Zhu
Y
, Salakhutdinov
R.R.
, et al. Skip-thought vectors
. In: Advances in Neural Information Processing Systems.
2015
, p. 3276
–84
.10.
Li
J
, Luong
M.-T.
, Jurafsky
D.
A hierarchical neural autoencoder for paragraphs and documents.
arXiv Preprint arXiv:1506.01057, 2015
.11.
Luong
M.-T.
, Pham
H
, Manning
C.D.
Effective approaches to attention-based neural machine translation.
arXiv Preprint arXiv:1508.04025, 2015
.12.
Cho
K
, Van Merrienboer
B
, Gulcehre
C
, € et al. Learning phrase representations using RNN encoder– decoder for statistical machine translation.
arXiv Preprint arXiv:1406.1078, 2014
.13.
Luscombe
N.M.
, Greenbaum
D.
and Gerstein
M.
(2001
). What is bioinformatics? A proposed definition and overview of the field
. Methods Inf. Med.
40
: 346
–358
14.
Ewing
B
, Hillier
L.
, Wendl
M.C.
, et al. Base-calling of automated sequencer traces using phred. I. Accuracy assessment
. Genome Res
1998
;8
:175
–85
.15.
Morozova
O
, Marra
M.A.
From cytogenetics to nextgeneration sequencing technologies: advances in the detection of genome rearrangements in tumors
. Biochem Cell Biol
2008
;86
:81
–91
16.
Pettersson
E
, Lundeberg
J
, Ahmadian
A.
Generations of sequencing technologies
. Genomics
2009
;93
:105
–11
.17.
Ewing
B
, Hillier
L
, Wendl
M.C.
, et al. Base-calling of automated sequencer traces using phred. I. Accuracy assessment
. Genome Res
1998
;8
:175
–85
.18.
Altschul
S.F.
, Gish
W
, Miller
W
, et al. Basic local alignment search tool
. J Mol Biol
1992
;215
:403
–410
.19.
Trapnell
C
, Salzberg
S.L.
How to map billions of short reads onto genomes
. Nat Biotechnol
2002
;27
:455
–7
.20.
Bateman
A
, Quackenbush
J.
Bioinformatics for next generation sequencing
. Bioinformatics
2002
;25
:429
.21.
Mardis
E.R.
Next-generation DNA sequencing methods
. Annu Rev Genomics Hum Genet
2009
;9
:387
–402
.22.
Morozova
O
, Marra
M.A.
Applications of next-generation sequencing technologies in functional genomics
. Genomics
2009
;92
:255
–64
.23.
Luscombe
N.M.
, Greenbaum
D
and Gerstein
M
(2001
). What is bioinformatics? A proposed definition and overview of the field
. Methods Inf. Med.
40
: 346
–358
24.
Larranaga
P
, Calvo
B
, Santana
R
, ∼et al. Machine learning in bioinformatics. Brief Bioinformatics
2006
;7
(1
):86
–112
.25.
Li
J
, Luong
M.-T.
, Jurafsky
D.
A hierarchical neural autoencoder for paragraphs and documents.
arXiv Preprint arXiv:1506.01057, 2015
.26.
Bayat
, A.
(2002
). Science, medicine, and the future: Bioinformatics
. BMJ: British Medical Journal
, 324
(7344
), 1018
.27.
Hogeweg
, P.
, & Hesper
, B.
(1974
). A model study on biomorphological description
. Pattern Recognition
, 6
(3-4
), 165
–179
.28.
Watson
, J. D.
(1990
). The human genome project: past, present, and future
. Science
, 248
(4951
), 44
–49
.29.
Van Kampen
, A. H. C.
, & Horrevoets
, A. J. G.
(2006
). The role of bioinformatics in genomic medicine. In Cardiovascular Research
(pp. 103
–119
). Springer
, Boston, MA
.30.
Larranaga
P
, Calvo
B
, Santana
R
, ∼et al. Machine learning in bioinformatics
. Brief Bioinformatics
2006
;7
(1
):86
–112
.31.
Hamosh
, A.
, Scott
, A. F.
, Amberger
, J.
, Bocchini
, C.
, Valle
, D.
, & McKusick
, V. A.
(2002
). Online Mendelian Inheritance in Man (OMIM), a knowledgebase of human genes and genetic disorders
. Nucleic acids research
, 30
(1
), 52
–55
.32.
Bleyl
, S. B.
, Mumford
, B. R.
, Thompson
, V.
, Carey
, J. C.
, Pysher
, T. J.
, Chin
, T. K.
, & Ward
, K.
(1997
). Neonatal, lethal noncompaction of the left ventricular myocardium is allelic with Barth syndrome
. The American Journal of Human Genetics
, 61
(4
), 868
–872
.33.
Versteeg
, R.
, van Schaik
, B. D.
, van Batenburg
, M. F.
, Roos
, M.
, Monajemi
, R.
, Caron
, H.
, … & van Kampen
, A. H.
(2003
). The human transcriptome map reveals extremes in gene density, intron length, GC content, and repeat pattern for domains of highly and weakly expressed genes
. Genome research
, 13
(9
), 1998
–2004
.34.
Velculescu
, V. E.
, Zhang
, L.
, Vogelstein
, B.
, & Kinzler
, K. W.
(1995
). Serial analysis of gene expression
. Science
, 270
(5235
), 484
–487
.35.
Ehrhart
, M. G.
, Ehrhart
, K. H.
, Roesch
, S. C.
, Chung-Herrera
, B. G.
, Nadler
, K.
, & Bradshaw
, K.
(2009
). Testing the latent factor structure and construct validity of the Ten-Item Personality Inventory
. Personality and individual Differences
, 47
(8
), 900
–905
.36.
Zhidan
, L.
, Zishou
, Z.
, Zhenzhen
, H.
, & Kancheng
, M.
(2006
). Investigation on preparation and property of nano-CaCO3/PP masterbatch modified by reactive monomers
. Journal of applied polymer science
, 101
(6
), 3907
–3914
.37.
Sousa
, S. A.
, Leitão
, J. H.
, Martins
, R. C.
, Sanches
, J. M.
, Suri
, J. S.
, & Giorgetti
, A.
(2016
). Bioinformatics applications in life sciences and technologies.
38.
Bhasin
M
, Singh
H
, Raghava
G.P.S.
MHCBN: A comprehensive database of MHC binding and non-binding peptides
. Bioinformatics.
2001
;19
(5
):665
–6
.39.
Nussbaum
A.K.
, Kuttler
C
, Hadeler
K.P.
, Rammensee
H.G.
, Schild
H. P.A.
ProC: A prediction algorithm for proteasomal cleavages
. Immunogenetics.
2005
;53
(2
):87
–94
.
This content is only available via PDF.
© 2023 AIP Publishing LLC.
2023
AIP Publishing LLC
You do not currently have access to this content.