Medical imaging using laparoscopic plays an important role in diagnosing many diseases, including intestinal diseases, infections inside the stomach, and others, and it is used as a means of vision during internal operations, in many cases, during the removal of infections and tumors, an operation is performed to cauterize process by smoke, which leads to a lack of clarity during imaging. In this study, the aim was to improve the medical laparoscope images that contain smoke based on the Dark Channel Prior (DCP) algorithm. In order to preserve the color information, this algorithm was applied to the lighting component only in YIQ space. To find out the efficiency of the improvement, the proposed method was compared with several optimization algorithms by calculating no-reference quality measures, by analyzing the results, the proposed method obtained high improvement coefficients.

1.
A.
Mutar
et al., “
Smoke detection based on image processing by using grey and transparency features
,”
J Theor Appl Inf Technol
, vol.
96
, no.
21
, pp.
6995
7005
,
2018
.
2.
N. M.
Mirza
,
A. A. D.
Al–Zuky
, and
H. G.
Dway
, “
Enhancement of the Underwater Images Using Modified Retinex Algorithm
,”
Al-Mustansiriyah J. Sci.
, vol.
24
, no.
5
, pp.
511
518
,
2014
.
3.
Z. S.
Abd-Al Ameer
,
H. G.
Daway
, and
H. H.
Kareem
, “
Enhancement Underwater Image Using Histogram Equalization Based on
,”
J. Eng. Appl. Sci.
, vol.
14
, no.
2
, pp.
641
647
,
2019
.
4.
H. G.
Daway
,
F. S.
Mohammed
, and
D. A.
Abdulabbas
, “
Aerial image enhancement using modified fast visibility restoration based on sigmoid function
,”
Adv. Nat. Appl. Sci.
, vol.
10
, p.
16
+, Sep.
2016
.
5.
R. M.
Habeeb
, “
Video Images Enhanced by using Sigmoid-Logarithm Transform
,” in
IOP Conference Series: Materials Science and Engineering
,
2020
, vol.
871
, no.
1
, p.
12062
.
6.
K.
He
,
J.
Sun
, and
X.
Tang
, “
Single image haze removal using dark channel prior
,”
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.
33
, no.
12
, pp.
2341
2353
,
2010
.
7.
K.
Tchaka
,
V. M.
Pawar
, and
D.
Stoyanov
, “
Chromaticity based smoke removal in endoscopic images
,” in
Medical Imaging 2017: Image Processing
,
2017
, vol.
10133
, p.
101331M
.
8.
C.
Wang
,
F. A.
Cheikh
,
M.
Kaaniche
, and
O. J.
Elle
, “
A smoke removal method for laparoscopic images
,” arXiv Prepr. arXiv1803.08410,
2018
.
9.
C.
Wang
,
F.
Alaya Cheikh
,
M.
Kaaniche
,
A.
Beghdadi
, and
O. J.
Elle
, “
Variational based smoke removal in laparoscopic images
,”
Biomed. Eng. Online
, vol.
17
, no.
1
, pp.
1
18
,
2018
.
10.
S.
Li
,
S.
Wang
,
D.
Zhang
,
C.
Feng
, and
L.
Shi
, “
Real-time smoke removal for the surveillance images under fire scenario
,”
Signal, Image Video Process.
, vol.
13
, no.
5
, pp.
1037
1043
, Jul.
2019
.
11.
C.
Wang
,
A. K.
Mohammed
,
F. A.
Cheikh
,
A.
Beghdadi
, and
O. J.
Elle
, “
Multiscale deep desmoking for laparoscopic surgery
,” in
Medical Imaging 2019: Image Processing
,
2019
, vol.
10949
, pp.
505
513
.
12.
A.
Muqeet
,
H.
Tariq
,
U.
Amjad
, and
A.
Samreen
, “
Analysis of hazy images based on K-means ground truth and quick shift segmentation
,”
Int. J. Sci. Technol. Res.
,
2019
.
13.
A. S.
Vemuri
, “
Survey of computer vision and machine learning in gastrointestinal endoscopy
”, arXiv Prepr. arXiv1904.13307,
2019
.
14.
A.
Teatini
et al., “
The effect of intraoperative imaging on surgical navigation for laparoscopic liver resection surgery
,”
Sci. Rep.
, vol.
9
, no.
1
, pp.
1
11
,
2019
.
15.
V.
Venkatesh
,
N.
Sharma
,
V.
Srivastava
, and
M.
Singh
, “
Unsupervised smoke to desmoked laparoscopic surgery images using contrast driven Cyclic-DesmokeGAN
,”
Comput. Biol. Med.
, vol.
123
, p.
103873
,
2020
.
16.
D.
Zhang
,
B.
Zhan
,
G.
Yang
, and
X.
Hu
, “
An improved edge detection algorithm based on image fuzzy enhancement
,” in
2009 4th IEEE Conference on Industrial Electronics and Applications
,
2009
, pp.
2412
2415
.
17.
S.
Wine
and
R.
Horne
, “
The Color Image Processing Hand Book
”,
International Thomson.
1998
.
18.
J.
Sun
,
K.
He
, and
X.
Tang
, “
Single image haze removal using dark channel priors
”,
Google Patents
, Dec. 25,
2012
.
19.
K.
Lakhwani
,
D.
Murarka
, and
N. S.
Chauhan
, “
Color Space Transformation for Visual Enhancement of noisy color Image
”,
International Journal of ICT and Management
, vol.
III
, pp.
6
13
,
2015
.
20.
A. P.
Twinanda
,
S.
Shehata
,
D.
Mutter
,
J.
Marescaux
,
M.
De Mathelin
, and
N.
Padoy
, “
Endonet: a deep architecture for recognition tasks on laparoscopic videos
,”
IEEE Trans. Med. Imaging
, vol.
36
, no.
1
, pp.
86
97
,
2016
.
21.
C.
Rafael
, “Gonzalez, Richard E. Woods, Digital Image Processing.”
Prentice Hall
,
2002
.
22.
A.
Mittal
,
R.
Soundararajan
, and
A. C.
Bovik
, “
Making a ‘completely blind’ image quality analyzer
,”
IEEE Signal Process. Lett.
, vol.
20
, no.
3
, pp.
209
212
,
2012
.
23.
N.
Venkatanath
,
D.
Praneeth
,
M. C.
Bh
,
S. S.
Channappayya
, and
S. S.
Medasani
, “
Blind image quality evaluation using perception based features
,” in
2015 Twenty First National Conference on Communications (NCC)
,
2015
, pp.
1
6
.
This content is only available via PDF.
You do not currently have access to this content.