Poisson regression is a kind of regression analysis that describes count data using a generalized linear model. A frequentist method for these models is to apply reweighted least-squares iteratively to determine the maximum likelihood estimators (MLE). In this study, we compare the effectiveness of frequentist and Bayesian computational techniques for estimating the parameters of the Poisson regression models. The Bayesian estimation approach was carried out using Markov Chain Monte Carlo (MCMC) algorithms. Two algorithms were presented: Hamiltonian Monte Carlo (HMC) and Random Walk Metropolis (RWM). The median of the mean absolute deviation (MMAD) was evaluated as a measure of the performance of estimators. The simulation results indicate that although the maximum likelihood technique on occasions performs better than the other methods in terms of the median of mean absolute deviation (MMAD) and the standard deviation (SD). However, the performance of the RWM appeared to be very good compared to the HMC in terms of convergence in the drawings.

1.
L. H.
Hashim
and
A. N.
Flaih
,
Selecting the best model to fit the Rainfall Count data Using Some Zero Type models with application
(
Journal of Al-Qadisiyah for computer science and Mathematics)
11
(
2
) (
2019
), pp.
28
41
.
2.
S.
Brooks
,
A.
Gelman
,
G.
Jones
and
X. L.
Meng
, Handbook of markov chain monte carlo (
CRC press
), (
2011
).
3.
A.
Mijatović
and
J.
Vogrinc
,
On the Poisson equation for Metropolis–Hastings
(
chains. Bernoulli)
.
24
(
3
) (
2018
), pp.
2401
2428
.
4.
R. M.
Neal
,
MCMC using Hamiltonian dynamics
(
Handbook of markov chain monte Carlo)
2
(
11
) (
2011
).
5.
S. H.
Khazraee
,
Full Bayesian Poisson-Hierarchical Models for Crash Data Analysis: Investigating the Impact of Model 5 Choice on Site-Specific Predictions
(
Doctoral dissertation, PhD Dissertation. Department of Civil Engineering, Texas A&M University, 6 College Station, Texas)
(
2016
).
6.
R.
Berk
, and
J. M.
MacDonald
,
Overdispersion and Poisson regression
(
Journal of Quantitati Criminology)
24
(
3
) (
2008
), pp.
269
284
.
7.
F.
Yousuf
and
A.A.
Khan
,
Bayesian Analysis of Count Data with R Using Laplace Approximation and Simulation Tools
(
Journal of Statistics Applications & Probability, J. Stat. Appl)
9
(
2
) (
2020
), pp.
267
277
.
8.
A. F.
Lukman
,
E.
Adewuyi
,
K.
Månsson
and
B. G.
Kibria
,
A new estimator for the multicollinear Poisson regression model: simulation and application
(
Scientific Reports)
11
(
1
) (
2021
), pp.
1
11
.
9.
R.
Winkelmann
, Econometric analysis of count data,
Springer Science & Business Media
(
2008
).
10.
R. H.
Myers
,
D. C.
Montgomery
,
G. G.
Vining
and
T. J.
Robinson
, Generalized linear models: with applications in engineering and the sciences (
John Wiley & Sons
) Vol.
791
(
2012
).
11.
Y.
Pawitan
, In all likelihood: statistical modeling and inference using likelihood (
Oxford University Press
) (
2001
).
12.
W. M.
Bolstad
, Understanding computational Bayesian statistics (
John Wiley and Sons
) Vol.
644
(
2009
).
13.
C. P.
Robert
,
G.
Casella
and
G.
Casella
, Monte Carlo statistical methods (
New York
:
Springer
) Vol.
2
(
2004
).
14.
Z.
Wang
,
M.
Broccardo
and
J.
Song
,
Hamiltonian Monte Carlo methods for subset simulation in reliability analysis
(
Structural Safety)
76
(
2019
), pp.
51
67
.
15.
K. M.
Hanson
,
July Markov Chain Monte Carlo posterior sampling with the Hamiltonian Method
, (
International Society for Optics and Photonics)
Vol.
4322
(
2001
), pp.
456
467
.
16.
S.
Thomas
and
W.
Tu
,
Learning Hamiltonian Monte Carlo in R
, (
The American Statistician)
(
2021
), pp.
1
56
.
17.
J. J.
Goeman
, Foundations of Linear and Generalized Linear Models, A. Agrestic (
2015
) (
Hoboken, NJ
:
John Wiley & Sons) Inc
. (2016)
444
pages, ISBN 978-1-118-73003-4.
18.
C. P.
Robert
,
G.
Casella
and
G.
Casella
,
Introducing Monte Carlo methods with r
, (
New York
:
Springer
)
18
(
2010
).
19.
A. D.
Martin
,
K. M.
Quinn
and
J. H.
Park
,
MCMC pack: Markov Chain Monte Carlo in R Society for Optics and Photonics
, (
2011
), pp.
456
467
.
This content is only available via PDF.
You do not currently have access to this content.