We introduce the notion of N-strong commutativity preserving Maps and N- anti- strong commutativity preserving Maps on a subset S of a Γ-ring R, in this paper, let N be a fixed positive integer we prove that if R is a semiprime Γ-ring with extended centroid CГ and additive map f from R onto R such that f either Γ- N- strong commutativity preserving Map or Γ-N-anti-strong commutativity preserving Map on R, then ⌈f(xn), xa=0 for all xR, aГ.

1.
X.
Xu
,
J.
Ma
, and
Y.
Zhou
,
Left derivations and strong commutativity preserving maps on semiprime Г-rings
(
Southeast Asian Bull. Math., RA
,
2012
),
39
, pp.
735
745
.
2.
M.
¨Ozt¨urk
and
Y.
Jun
,
On the centroid of the prime gamma rings II
(
Turkish J. Math.
2001
),
25
, pp.
367
377
.
3.
A. H.
Majeed
and
S. k.
Motashar
,
Γ-Centralizing mappings of semiprime Γ-rings
(
Iraqi Journal of Science
,
2012
),
53
, pp.
657
662
.
4.
H. E.
Bell
and
G.
Mason
,
On derivations in near-rings and rings
(
Math. J. Okayama Univ.
,
1992
),
34
, pp.
135
144
.
5.
H. E.
Bell
and
M. N.
Daif
,
On commutativity and strong commutativity preserving maps
(
Can. Math. Bull.
,
1994
),
37
, pp.
443
447
.
6.
M.
Brešar
,
On certain pairs of functions of semiprime rings
(
Proc. Amer. Math. Soc.
,
1994
),
129
, pp.
709
713
.
7.
M. A.
Öztürk
,
M.
Sapanci
,
M.
Soytürk
, and
K. H.
Kim
,
Symmetric Bi-Derivation On Prime Gamma Rings
(
Scientiae Mathematica
,
2000
),
3
, pp.
273
281
.
8.
R.
Ameri
and
R.
Sadeghi
,
Gamma Modules
(
Ratio Mathematica
,
2010
),
20
, pp.
127
147
.
This content is only available via PDF.
You do not currently have access to this content.