The aim of this paper is to solve unconstrained fuzzy optimization Problems when the coefficients are trapezoidal fuzzy numbers based on modified Quasi-Newton methods especially modified BFGS method, Numerical examples are solved to show the effective of the method which reported as a tables formula.

1.
Arana-Jimenez
,
M.
,
Rufian-Lizana
,
A.
,
Chalco-Cano
,
Y.
, and
H. Rom
an-Flores
,
Generalized convexity in fuzzy vector optimization through a linear ordering
,
Information Sciences
, vol.
312
, pp.
13
24
,
2015
.
2.
Bazaraa
,
M.S.
,
Sherali
,
H.D.
, and
C.M.
Shetty
,
Nonlinear Programming: Theory and Algorithms
,
John Wiley and Sons
,
2013
.
3.
Bector
,
C.R.
, and
S.
Chandra
,
Fuzzy Mathematical Programming and Fuzzy Matrix Games
,
Springer-Verlag
,
Berlin
,
2005
.
4.
Bede
,
B.
, and
L.
Stefani
,
Generalized differentiability of fuzzy-valued functions, Fuzzy Sets and Systems
, vol.
230
, pp.
119
141
,
2013
.
5.
Bellman
,
R.E.
, and
L.A.
Zadeh
,
Decision making in a fuzzy environment
,
Management Science
, vol.
17
, pp.
141
164
,
1970
.
6.
Chalco-Cano
,
Y.
,
Silva
,
G.N.
, and
A.
Rufian-Lizana
,
On the Newton method for solving fuzzy optimization problems
,
Fuzzy Sets and Systems
, vol.
272
, pp.
60
69
,
2015
.
7.
Fliege
,
J.
,
Grana Drummond
,
L.M.
, and
B.F.
Svaiter
,
Newton’s method for multiobjective optimization
,
SIAM Journal on Optimization
, vol.
20
, no.
2
, pp.
602
626
,
2009
.
8.
Ganesan
,
K.
, and
P.
Veeramani
,
Fuzzy linear programming with trapezoidal fuzzy numbers
,
Annals of Operations Research
, vol.
143
, pp.
305
315
,
2006
.
9.
Ghaznavi
,
M.
,
Soleimani
,
F.
, and
N.
Hoseinpoor
,
Parametric analysis in fuzzy number linear programming problems
,
International Journal of Fuzzy Systems
, vol.
18
, no.
3
, pp.
463
477
,
2016
.
10.
Ghaznavi
,
M.
and
N.
Hoseinpoor
.,"
A Quasi-Newton Method for Solving Fuzzy Optimization Problems
",
Journal of Uncertain Systems
, Vol.
11
, No.
1
, pp.
3
17
,
2017
.
11.
Goetschel
R.
Jr.
,
Voxman
W.
:
Elementary fuzzy calculus
.
Fuzzy Sets Syst.
18
,
31
43
(
1986
).
12.
Ghosh
,
D.
,
A quasi-Newton method with rank-two update to solve interval optimization problems
,
International Journal of Applied and Computational Mathematics
,
2016
, doi:.
13.
Ghosh
,
D.
,
A Newton method for capturing efficient solutions of interval optimization problems
,
OPSEARCH
, vol.
53
, no.
3
, pp.
648
665
,
2016
.
14.
Ghosh
,
D.
,
Newton method to obtain efficient solutions of the optimization problems with interval-valued objective functions
,
Journal of Applied Mathematics and Computing
,
2016
, doi:.
15.
Griva
,
I.
,
Nash
,
S.G.
, and
A.
Sofer
,
Linear and Nonlinear Optimization
, 2nd Edition,
SIAM
,
2009
.
16.
Hosseinzadeh Lotfi
,
F.
,
Allahviranloo
,
T.
,
Alimardani Jondabeh
,
M.
, and
L.
Alizadeh
,
Solving a full fuzzy linear programming using lexicography method and fuzzy approximate solution
,
Applied Mathematical Modelling
, vol.
33
, pp.
3151
3156
,
2009
.
17.
Karun Kumar
,
M.
, and
V.N.
Sastry
,
A new algorithm to compute pareto-optimal paths in a multi objective fuzzy weighted network
,
OPSEARCH
, vol.
50
, no.
3
, pp.
297
318
,
2013
.
18.
Liu
,
B.
,
Uncertainty Theory
,
Springer-Verlag
,
Berlin
,
2015
.
19.
Lodwick
,
W.A.
, and
J.
Kacprzyk
(Eds.),
Fuzzy Optimization: Recent Advances and Applications
,
Springer-Verlag
,
Berlin
,
2010
.
20.
Mahdavi-Amiri
,
N.
, and
S.H.
Nasseri
,
Duality in fuzzy number linear programming by use of a certain linear ranking function
,
Applied Mathematics and Computation
, vol.
180
, pp.
206
216
,
2006
.
21.
Mahmood
,
Saad
Shakir
, "
Modified BFGS Update (H-Version) Based on the Determinant Property of Inverse of Hessian Matrix for Unconstrained Optimization
",
Baghdad Science Journal
, vol
17
(
3
),
2020
.
22.
Maleki
,
H.R.
,
Ranking functions and their applications to fuzzy linear programming
,
Far East Journal Mathematics Sciences
, vol.
4
, pp.
283
301
,
2002
.
23.
Mottaghi
,
A.
,
Ezzati
,
R.
, and
E.
Khorram
,
A new method for solving fuzzy linear programming problems based on the fuzzy linear complementary problem (FLCP)
,
International Journal of Fuzzy Systems
, vol.
17
, no.
2
, pp.
236
245
,
2015
.
24.
Nocedal
,
J.
, and
S.
Wright
,
Numerical Optimization
,
Springer Science and Business Media
,
2006
.
25.
Pirzada
,
U.M.
, and
V.D.
Pathak
,
Newton method for solving the multi-variable fuzzy optimization problem
,
Journal of Optimization Theory and Applications
, vol.
156
, no.
3
, pp.
867
881
,
2013
.
26.
Pirzada
,
Umme
Salma M.
, "
Optimal Solution of Nonlinear Fuzzy Optimization Problem under Linear Order Relation
", arXiv:1802.09909v1 [math.GM] 23 Feb
2010
.
27.
Qu
,
S.
,
Goh
,
M.
, and
F.T.S.
Chan
,
Quasi-Newton methods for solving multiobjective optimization
,
Operations Research Letters
, vol.
39
, pp.
397
399
,
2011
.
28.
Stefanini
,
L.
,
A generalization of Hukuhara difference and division for interval and fuzzy arithmetic
,
Fuzzy Sets and Systems
, vol.
161
, no.
11
, pp.
1564
1584
,
2010
.
29.
Stefanini
,
L.
, and
B.
Barnabas
,
Generalized Hukuhara differentiability of interval-valued functions and interval differential equations
,
Nonlinear Analysis: Theory, Methods & Applications
, vol.
71
, no.
3
, pp.
1311
1328
,
2009
.
30.
Tanaka
,
H.
,
Okuda
,
T.
, and
K.
Asai
,
On fuzzy mathematical programming
,
Journal of Cybernetics
, vol.
3
, pp.
37
46
,
1974
.
This content is only available via PDF.
You do not currently have access to this content.