The deadliest disease and a major cause of the mortality worldwide is heart disease. In medical scope, Machine Learning (ML) is becoming increasingly important. In this work, the SMOTE technique balanced dataset is utilized for the improvement of the performance of the prediction of heart disease, and Cleveland Heart Disease Dataset is predicted using the Decision Tree (DT) algorithm. The dataset contains 14 key attributes that were utilized in the investigation. Yet, classes are not often balanced, and data imbalances develop in the case when one class is a minority and the other is a majority. The usage of the SMOTE resampling technique for balancing the data was examined in this research, and the outcomes of the DT algorithm were compared for unbalanced and balanced data. According to the results of the experiments, classification with resampling/balancing improves accuracy by up to 18.1%. The accuracy of DT without balanced data is 73.3%, whereas the accuracy of DT with balanced data is 91.4%.

1.
I.
Tougui
,
A.
Jilbab
, and
J.
El Mhamdi
, “
Heart disease classification using data mining tools and machine learning techniques
,”
Health Technol. (Berl).
, vol.
10
, no.
5
, pp.
1137
1144
,
2020
, doi: .
2.
I. A.
Zriqat
,
A. M.
Altamimi
, and
M.
Azzeh
, “
A Comparative Study for Predicting Heart Diseases Using Data Mining Classification Methods
,” vol.
7
, no.
1
, pp.
168
172
,
2017
, [Online]. Available: 1704.02799.
3.
A. K.
Gárate-Escamila
,
A. Hajjam
El Hassani
, and
E.
Andrès
, “
Classification models for heart disease prediction using feature selection and PCA
,”
Informatics Med. Unlocked
, vol.
19
, p.
100330
,
2020
, doi: .
4.
A. H.
Chen
,
S. Y.
Huang
,
P. S.
Hong
,
C. H.
Cheng
, and
E. J.
Lin
, “
HDPS: Heart disease prediction system
,”
Comput. Cardiol. (2010).
, vol.
38
, pp.
557
560
,
2011
.
5.
M. A. M.
Abushariah
,
A. A. M.
Alqudah
,
O. Y.
Adwan
, and
R. M. M.
Yousef
, “
Automatic Heart Disease Diagnosis System Based on Artificial Neural Network (ANN) and Adaptive Neuro-Fuzzy Inference Systems (ANFIS) Approaches
,”
J. Softw. Eng. Appl.
, vol.
07
, no.
12
, pp.
1055
1064
,
2014
, doi: .
6.
A. U.
Haq
,
J. P.
Li
,
M. H.
Memon
,
S.
Nazir
,
R.
Sun
, and
I.
Garciá-Magarinõ
, “
A hybrid intelligent system framework for the prediction of heart disease using machine learning algorithms
,”
Mob. Inf. Syst.
, vol.
2018
,
2018
, doi: .
7.
N. B.
Muppalaneni
,
M.
Ma
, and
S.
Gurumoorthy
,
Soft Computing and Medical Bioinformatics
.
Springer
Singapore
,
2019
.
8.
A. N.
Oo
and
K. T.
Win
, “
Feature Selection based Sequential Minimal Optimization (SMO) Classifier for Heart Disease Classification
,”
2019
.
9.
R.
Atallah
and
A.
Al-Mousa
, “
Heart Disease Detection Using Machine Learning Majority Voting Ensemble Method
,”
2019 2nd Int. Conf. New Trends Comput. Sci. ICTCS 2019 - Proc.
, pp.
1
6
,
2019
, doi: .
10.
S.
Ketu
and
P. K.
Mishra
, “
Empirical Analysis of Machine Learning Algorithms on Imbalance Electrocardiogram Based Arrhythmia Dataset for Heart Disease Detection
,”
Arab. J. Sci. Eng.
, no. 0123456789,
2021
, doi: .
11.
S.
Uddin
,
A.
Khan
,
M. E.
Hossain
, and
M. A.
Moni
, “
Comparing different supervised machine learning algorithms for disease prediction
,”
BMC Med. Inform. Decis. Mak.
, vol.
19
, no.
1
, pp.
1
16
,
2019
, doi: .
12.
Alireza
Baratloo
,
Mostafa
Hosseini
,
Ahmed
Negida
,
Gehad
El Ashal
(
2015
),"
Part 1: Simple Definition and Calculation of Accuracy, Sensitivity and Specificity
",
Emergency
:
3
(
2
):
48
49
.
13.
Shubham
Sharma
&
Ahmed J.
Obaid
(
2020
)
Mathematical modelling, analysis and design of fuzzy logic controller for the control of ventilation systems using MATLAB fuzzy logic toolbox
,
Journal of Interdisciplinary Mathematics
,
23
:
4
,
843
849
, DOI: .
This content is only available via PDF.
You do not currently have access to this content.