In this paper, we substantiate the selection of informative features of helicopter and airplane acoustic signals for the problem of their recognition. We show that the most informative features are the samples of extrema of the power spectrum of input signals, which are non-centered random variables. Invariance of the informative features to the helicopter flight speed is ensured by adding the adaptation block to the block of selection of informative features, which is implemented as a tracking meter of the blade passing encounter frequency.

1.
Avtonomnye informatsionnye i upravliayushchie sistemy
. In 4 vols. Vol. 1 / Ed. by
A. B.
Borzov
.
Moscow
:
Inzhener Publ.; Oniko-M Publ
.,
2011
.
466
p. (in Russian).
2.
Tang
Haifeng
,
Sun
Degang
.
Real Time Multisensor Target Recognition Based on DSP
//
8th International Conference on Electronic Measurement and Instruments (ICEMI ’07
).
IEEE Publ
.,
2007
. P.
4
24
– 4-28. DOI: .
3.
Elshafei
M.
,
Akhtar
S.
,
Ahmed
M.S.
Parametric Models for Helicopter Identification Using ANN
//
IEEE Transactions on Aerospace and Electronic Systems.
2000
. Vol.
36
, Iss.
4
. P.
1242
1252
. DOI: .
4.
Sanwei
Yang
,
Jiuwen
Cao
,
Jianzhong
Wang
,
Ruirong
Wang
.
Linear Prediction of One-Sided Autocorrelation Sequence for Noisy Acoustics Recognition of Excavation Equipments
//
2016 12th World Congress on Intelligent Control and Automation (WCICA
).
IEEE Conference Publications
. Year:
2016
, P.
924
928
. DOI: .
5.
Du
Yinggang
,
Lu
Jinhui
,
Shi
xiangquan
,
Gu
Yalin
.
Target Identification Based on the Optimal Base Number
//
Proceedings 1998 Fourth International Conference on Signal Processing (ICSP ’98
). Vol. 1.
IEEE Publ
.,
1998
. P.
271
274
. DOI: .
6.
Moukas
P.
,
Simson
J.
,
Norton-Wayne
L.
Automatic Identification of Noise Pollution Sources
//
IEEE Transactions on Systems, Man and Cybernetics.
1982
. Vol.
12
, Iss.
5
. p.
622
634
. DOI: .
7.
Lutsenko
V.I.
,
Lutsenko
I.V.
,
Popov
I.V.
,
Sobolyak
A.V.
Signatures of Acousto-Electromagnetic Portraits of Aerodynamic and Terrestrial EMechanical Objects
//
2016 9th International Kharkiv Symposium on Physics and Engineering of Microwaves, Millimeter and Submillimeter Waves (MSMW
).
IEEE Conference Publications
. Year:
2016
P.
1
4
. DOI: .
8.
Takahiro
Ishiki
,
Makoto
Kumon
.
Design Model of Microphone Arrays for Multirotor Helicopters
//
2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS
).
IEEE Conference Publications
. Year:
2015
/ p.
6143
6148
. DOI: .
9.
Tushar
Sandhan
,
Sukanya
Sonowal
,
Jin Young
Choi
.
Audio Bank: A High-Level Acoustic Signal Representation for Audio Eventrecognition
//
2014 14th International Conference on Control, Automation and Systems (ICCAS 2014
).
IEEE Conference Publications
. Year:
2014
, P.
82
87
. DOI: .
10.
Huan
Shi
,
Jinyu
Xiong
,
Chenyang
Zhou
,
Su
Yang
.
A New Recognition and Classification Algorithm of Underwater Acoustic Signals Based on Multi-Domain Features Combination
//
2016 IEEE/OES China Ocean Acoustics (COA
).
IEEE Conference Publications
. Year:
2016
, P.
1
7
. DOI: .
11.
Fu
Ruo-Ran
.
Compound Jamming Signal Recognition Based on Neural Networks
//
2016 Sixth International Conference on Instrumentation & Measurement, Computer, Communication and Control (IMCCC
).
IEEE Conference Publications
. Year:
2016
, P.
737
740
. DOI:
12.
Griffin
А.
,
Mouchtaris
A.
Localizing Multiple Audio Sources from DOA Estimates in a Wireless Acoustic Sensor Network
//
IEEE Workshop on Applications of Signal Processing to Audio and Acoustics. IEEE
,
2013
, pp.
1
4
.
13.
Mohammad
М.F.
,
Amir
H.R.
,
Ensieh
I.
,
Real-time ML Based Algorithm for Localizing Acoustic Source in WSN
//
The 22nd Iranian Conf. on Electrical Engineering. IEEE
,
2014
, pp.
62
66
.
14.
Sadasivan
S.
Acoustic Signature of an Unmanned Air Vehicle – Exploitation for Aircraft Localisation and Parameter Estimation
/
S.
Sadasivan
,
M.
Gurubasavaraj
,
S.R.
Sekar
//
Eronautical DEF SCI J.
2001
. – Vol.
51
, №
3
. – Р.
279
283
.
15.
Marino
L.
Experimental Analysis of UAV-Propellers Noise
//
16th AIAA/CEAS Aeroacoustics Conference. University «La Sapienza»
,
Rome, Italy
. –
American Institute of Aeronautics and Astronautics
,
2010
. – p.
1
14
.
16.
Pham
T.
TTCP AG-6: Acoustic Detection and Tracking of UAVs
/ T.Pham, N.Srour //
U.S. Army Research Laboratory
.
Proc. of SPIE
. –
2004
. – Vol.
54
. – p.
24
29
.
17.
Detecting, Tracking and Identifying Airborne Threats with Netted Sensor Fence /
W.
Shi
,
G.
Arabadjis
,
B.
Bishop
,
P.
Hill
//
Sensor Fusion – Foundation and Applications
. –
Rijeka, Croatia
:
InTech Europe
,
2001
. – Р.
139
158
.
18.
Weiqun
Shi
,
Ronald
Fante
,
John
Joder
, and
Gregory
Crowford
.
Multi-Modal Netted Sensor Fence for Homeland Security // Approved for Public Release; Distribution Unlimited Case
, #05-0354. – p.
1
12
.
19.
Nanjaport
Intrater
,
W. Nathan
Alexander
,
William J.
Davenport
,
Sheril M.
Grace
, and
Amanda
Dropkin
.
Experimental Study of Quadcopter Acoustic and Performance at Static Thrust Conditions
//
Aeroacoustics Conferences
.
30 May-1 June. 2016
,
Lyon, France
. 22Nd AIAA/CEAS Aeroacoustics Conference.
American Institute of Aeronautics and Astronautics
. – p.
1
14
.
20.
Saravanakumar
A.
Exploitation of Acoustic Signature of Low Flying Aircraft Using Acoustic Vector Sensor
/
A.
Saravanakumar
,
K.
Senthilkumar
//
Defence Science Journal.
– March
2014
. – Vol.
64
, No.
2
. – Р.
95
98
.
21.
V.K.
Khokhlov
,
S.A.
Molchanov
,
A.K.
Likhoedenko
.
Regression Algorithms for Detection and Recognition of Non-Centered Non-Stationary Random Signals in the Short-Range Autonomous Information Systems
//
Science and Education of the Bauman MSTU
,
2017
, no.
03
, pp.
150
169
.
This content is only available via PDF.
You do not currently have access to this content.