Data and knowledge discovery are essential in the healthcare industry for disease diagnosis and prediction. Patient records and disease-related information are data in the health industry. The DCKSVM and HRBFNN approaches are utilized to predict the result. The aim is for evaluating the efficiency of the DCKSVM-Divide and Conquer Kernal Support Vector Machine learning and RBFNN-Radial Basis Function Neural Network algorithm in detecting diabetes in the general population. Diabetic prediction can be predicted by many existing algorithms, but machine learning algorithms for used this research. In this research, the KNN algorithm is used as a preprocessing tool to fulfill the missing attribute value in the dataset. The HRBFNN approach gives good accuracy. The result shows that the RBFNN algorithm give good accuracy than SVM in predicting diabetics.

1.
Aiswarya
Mujumdar
,
Vaidhei
V.
,
Diabetes Prediction Using Machine Learning Algorithms
,
Science Direct-Procedia Computer Science
, Vol.
165
, pp.
292
299
.
2.
David
Alberts
,
Lena
Mamykina
,
Data-Driven Blood Glucose Pattern Classification, and Anomalies Detection: Machine-Learning Applications in Type 1 Diabetes
,
JMIR Publications
,
2019
, Vol.
21
. pp.
31
49
.
3.
Deepti
Sisodia
,
Dilip Singh
Sisodia
,
Prediction of Diabetes using Classification Algorithm
,
International Journal on Computational Intelligence and Data Science
,
2018
, Vol.
132
, pp.
15787
1585
.
4.
Sumitha
J.
,
BRCA Gene Expression Level Analysis for Identification of Breast Cancer using computer-assisted Algorithm
,
International Journal of Pharma and Biosciences
,
2018
, Vol.
9
, pp.
60
64
.
5.
Chala
Beyene
,
Survey on Prediction and Analysis the Occurrence of Heart Disease Using Data Mining Techniques
,
International Journal of Pure and Applied Mathematics
,
2018
, Vol.
118
, pp.
165
174
.
6.
Chieh-Chen
Wu
,
Wen-Chun
Yeh
,
Prediction of fatty liver disease using machine learning algorithms
,
Computer Methods and Programs in Biomedicine
,
2019
, Vol.
170
, pp.
23
29
.
7.
Sumitha
J
,
Analysis of Gene Expression Value Using Bat Algorithm with Multifactor Non-Negative Matrix Factorization
,
Pakistan Journal of Biotechnology
,
2019
, Vol.
16
(
2
), pp.
101
104
.
8.
Elham
Nikookar
,
Ebrahim
Naderi
,
Hybrid Ensemble Framework for Heart Disease Detection and Prediction
,
International Journal of Advanced Computer Science and Applications
,
2018
, Vol.
9
, pp.
243
248
.
9.
Divya
Jain
,
Vijendra
Singh
,
Feature selection and classification systems for chronic disease prediction: A review
,
Egyptian Informatics Journal
,
2018
, Vol.
19
, pp.
179
189
.
10.
El-Houssainy
A.
,
Radya
,
Ayman S.
Anwar
,
Prediction of kidney disease stages using data mining algorithms
,
Informatics in medicine unlocked
,
2019
, Vol.
15
, pp.
100178
.
11.
Muhammad
Yusril
,
Helmi
Setyawan
,
Rolly Maulana
Awangga
,
K-Nearest neighbor algorithm on implicit feedback to determine SOP
,
Research Gate, 2019, Article · June 2019
, Vol.
17
, pp.
1425
1431
.
12.
Mucahid Mustafa
Saritas
,
Ali
Yasar
,
Performance Analysis of ANN and Naive Bayes Classification Algorithm for Data Classification
,
International Journal of Intelligent Systems and Applications in Engineering
,
2019
, Vol
7
, pp.
88
91
.
13.
Hossein
Moayedi 1,2
,
Dieu Tien
Bui
,
The Feasibility of Three Prediction Techniques of the Artificial Neural Network, Adaptive Neuro-Fuzzy Inference System, and Hybrid Particle Swarm Optimization for Assessing the Safety Factor of Cohesive Slopes
,
International Journal of Geo-Information, ISPRS Int. J. Geo-Inf.
2019
, Vol.
8
, pp.
391
400
.
14.
Gyeongcheol
Cho
,
Jinyeong
Yim
,
Review of Machine Learning Algorithms for Diagnosing Mental Illness
,
Psychiatry Investing.
2019
, Vol.
16
, pp.
262
269
.
15.
Sumitha
J.
,
Devi
T.
,
Breast Cancer Diagnosis in Analysis of BRCA Gene Using Machine Learning Algorithms, 2016
,
Pakistan Journal of Biotechnology
,
2016
, Vol.
13
, pp.
231
235
.
16.
Sumitha
J.
,
Analysis of Gene Expression Value Using Bio-Inspired Algorithms
,
Pakistan Journal of Biotechnology
,
2019
, Vol.
16
:
115
118
.
17.
Sumitha
J.
,
Devi
T.
,
Ravi
D.
,
Comparative Study on Gene Expression for Detecting Diseases Using Optimized Algorithm
,
International Journal of Human Genetics
,
2017
, Vol.
17
, pp.
38
42
.
18.
Sumitha
J.
,
Devi
T.
,
Analysis of Expression Level of Breast Cancer Gene Using Machine Learning Algorithms for Diagnosis of Breast Cancer
,
International Journal of Pharma and Bioscience
,
2017
, Vol.
8
, pp.
79
85
.
19.
Sumitha
J.
,
Mallika
R.
,
Cancer Classification in Microarray Data Using Gene Expression with SVM OAA and SVM OAO
,
International Journal of Advanced Research in Computer Science
,
2011
, Vol.
2
, pp.
1
4
.
20.
Naveen Kishore
G.
,
Rajesh
V.
,
Vamsi Akki
Reddy
,
Prediction of Diabetes Using Machine Learning Classification Algorithms, 2020
,
International Journal of Scientific and Technology Research
, Vol.
9
, pp.
1805
1808
.
21.
Shahadat
Uddin
,
Arif
Khan
,
Md. Ekramul
Hossain
,
Mohammad Ali
Moni
,
Comparing different machine learning algorithms for disease prediction, 2019
,
BMC Medical Informatics and Decision Making
, Vol
19
, pp.
1
16
22.
Kesav
Srivastava
,
Dilip Kumar
Choubey
,
Heart Disease Prediction using Machine Learning and Data Mining
,
2020
,
International Journal of Recent Technology and Engineering
, Vol
9
, pp.
216
219
23.
Rudra A.
Godse
,
Smita S.
Gunjal
,
Karn A.
Jagtap
,
Neha S.
Mahamuni
,
Multiple Disease Prediction Using Different Machine Learning Algorithms Comparatively
,
2019
,
International Journal of Advanced Research in Computer and Communication Engineering
, Vol
8
, pp.
50
52
24.
Shabaz Ali
,
N.
,
Divya
,
G.
Prediction of Disease in Smart Health Care System using Machine Learning
,
2020
,
International Journal of Recent Technology and Engineering
, Vol
8
, pp.
2534
2537
25.
Anavarapu Naga
Prathyusha
,
Navasinga
Rao
,
Diabetic Prediction Using Kernal Based Support Vector Machine
,
2020
,
International Journal of Advanced Trends in Computer Science and Engineering
, Vol
9
, pp.
1178
1183
26.
Osman
A. H.
,
Aljahdali
H. M.
,
Diabetes disease diagnosis method based on feature extraction using K-SVM
,
2017
,
International Journal of Advanced Computer Science Application
,
8
(
1
).
27.
Kose
U.
,
Guraksin
G.
,
Deperlioglu
O.
,
Cognitive Development Optimization Algorithm Based Support Vector Machines for Determining Diabetes
,
2016
,
Brain Journal of Artificial Intelligence Research
, pp.
2067
3957
.
28.
Sethi
H.
,
Goraya
A.
,
Sharma
V.
,
Artificial Intelligence based Ensemble Model for Diagnosis of Diabetes
,
2017
,
International Journal of Advanced Research in Computer Science
, pp.
0976
5697
.
29.
Giveki
D.
,
Salimi
H.
,
Bahmanyar
G.
,
Khademian
Y.
,
Automatic Detection of Diabetes Diagnosis using Feature Weighted Support Vector Machines based on Mutual Information and Modified Cuckoo Search
,
2012
, ArXiv, pp.
2319
7595
.
30.
Kadhm
M. S.
,
Ghindawi
I. W.
,
Mhawi
D. E.
,
An Accurate Diabetes Prediction System Based on K-means Clustering and Proposed Classification Approach
,
2018
,
International Journal of Applied Engineering Research
,
13
(
6
), pp.
4038
4041
.
This content is only available via PDF.
You do not currently have access to this content.