In this paper, cyclic topologically contraction mapping in arbitrary topological space is introduced and existence and uniqueness of best proximity pairs is proved.
Topics
General topology
REFERENCES
1.
W.
Kirk
, P.
Srinivasan
, and P.
Veeramani
, “Fixed points for mappings satisfying cyclical contrative conditions
,” Fixed Point Theory
4
, 79
–89
(2003
).2.
S.
Banach
, “Sur les operations dans les ensembeles abstraits et leur applicaion aux equations integrales
,” Fund. Math.
3
, 133
–181
(1992
).3.
A.
Eldred
and P.
Veeramani
, “Existence and convergence of best proximity points
,” Fund. Math.
323
, 1001
–1006
(2006
).4.
H.
Aydi
and A.
Felhi
, “Best proximity points for cyclic kannan-chatterjea-ciric type contractions on metric-like spaces
,” J. Nonlinear Sci. Appl
9
, 2458
–2466
(2016
).5.
J.G.
Kadwin
and M.
Marudai
, “Fixed point and best proximity point results for generalised cyclic coupled mappings
,” Thai J. Math.
. 14
, 431
–441
(2016
).6.
Ansari,
A.
Hojat
, G. K.
Jacob
, M.
Marudai
, and P.
Kumam
, “On the c-class functions of fixed point and best proximity point results for generalised cyclic coupled mappings
,” Cogent Mathematics.
3
, 1235354
(2016
).7.
S.
Sujith
and P.
Srinivasan
, “Fixed point theorem for k-quasi contraction map
,” IJPAM
114
, 87
–98
(2017
).8.
A.
Liepins
, “Edelstein’s fixed point theorem in topological spaces
,” Numer. Funct. Anal. Optim.
2
, 387
–396
(1980
).9.
V. S.
Raj
and T.
Piramatchi
, “Best proximity point theorems in topological spaces
,” J. Fixed Point Theory Appl.
22
, Article 2
(2020
).
This content is only available via PDF.
©2023 Authors. Published by AIP Publishing.
2023
Author(s)
You do not currently have access to this content.