In this paper, cyclic topologically contraction mapping in arbitrary topological space is introduced and existence and uniqueness of best proximity pairs is proved.

1.
W.
Kirk
,
P.
Srinivasan
, and
P.
Veeramani
, “
Fixed points for mappings satisfying cyclical contrative conditions
,”
Fixed Point Theory
4
,
79
89
(
2003
).
2.
S.
Banach
, “
Sur les operations dans les ensembeles abstraits et leur applicaion aux equations integrales
,”
Fund. Math.
3
,
133
181
(
1992
).
3.
A.
Eldred
and
P.
Veeramani
, “
Existence and convergence of best proximity points
,”
Fund. Math.
323
,
1001
1006
(
2006
).
4.
H.
Aydi
and
A.
Felhi
, “
Best proximity points for cyclic kannan-chatterjea-ciric type contractions on metric-like spaces
,”
J. Nonlinear Sci. Appl
9
,
2458
2466
(
2016
).
5.
J.G.
Kadwin
and
M.
Marudai
, “
Fixed point and best proximity point results for generalised cyclic coupled mappings
,”
Thai J. Math.
.
14
,
431
441
(
2016
).
6.
Ansari,
A.
Hojat
,
G. K.
Jacob
,
M.
Marudai
, and
P.
Kumam
, “
On the c-class functions of fixed point and best proximity point results for generalised cyclic coupled mappings
,”
Cogent Mathematics.
3
,
1235354
(
2016
).
7.
S.
Sujith
and
P.
Srinivasan
, “
Fixed point theorem for k-quasi contraction map
,”
IJPAM
114
,
87
98
(
2017
).
8.
A.
Liepins
, “
Edelstein’s fixed point theorem in topological spaces
,”
Numer. Funct. Anal. Optim.
2
,
387
396
(
1980
).
9.
V. S.
Raj
and
T.
Piramatchi
, “
Best proximity point theorems in topological spaces
,”
J. Fixed Point Theory Appl.
22
,
Article 2
(
2020
).
This content is only available via PDF.
You do not currently have access to this content.