A graph G = (V(G), E(G) is said to permit prime distance labeling (PDL) if there exists a 1-1 labeling f: V (G) → Z such that for any two adjacent nodes u and v in G, the integer |f(u) − f(v)| is a prime. So G is a prime distance graph (PDG) if and only if there is a PDL of G. Similarly, a graph G′ = (V(G′), E(G′)) with p −nodes is said to allow prime labeling (PL) if there exists a bijection f: V(G′) → {1, 2, . . . , p} such that for each line e = uv,GCD{f(u), f(v)} = 1. A graph that admits PL is called a prime graph (PG). In this article, PDL and PL of various classes of graphs are investigated.
REFERENCES
1.
A.
Abdollahi
et al., “Non-commuting graph of a group
”, Journal of Algebra
298
, 468
–492
(2006
). 2.
D. M.
Burton
, Elementary number
theory
, Mc Graw Hill Education
, India
, (2012
).3.
J. A.
Gallian
, “A dynamic survey of graph labeling
”, Electron. J. Combin.
DS6
(23
): 1
–553
(2020
).4.
Hung-Lin
Fu
and Kuo-Ching
Huang
, “On prime labeling
”, Discrete Mathematics
127
, 181
–186
(1994
). 5.
J. D.
Laison
et al., “Finite prime distance graphs and 2-odd graphs
”, Discrete Math.
313
, 2281
–2291
(2013
). 6.
S. M.
Lee
, I.
Wui
, and J.
Yeh
, “On the amalgamation of prime graphs
”, Bull. Malays. Math. Soc.
11
, 59
–67
(1988
).7.
A.
Parthiban
and N. G.
David
, “Prime distance labeling of some path related graphs
”, Int. J. Pure Appl. Math.
7
, 59
–67
(2018
).8.
A.
Parthiban
and N. G.
David
, “On prime distance labeling of some special graphs
”, Contemp. Studies in Discrete Math.
2
, 21
–26
(2018
).9.
A.
Parthiban
and S.
Sharma
, “On prime distance labeling of non-commuting graph of non-abelian symmetric Groups
”, Think India Journal
22
, 3823
–3833
(2019
).10.
A.
Parthiban
, Ram
Dayal
and S.
Sharma
, “Prime distance labeling of the non-commuting graph of some non-abelian groups
”, European Journal of Molecular & Clinical Medicine.
7
, 3919
–3926
(2020
).11.
U. M.
Prajapati
and S. J.
Gajjar
, “Some results on prime labeling
”, Open J. Discrete Math.
4
, 60
–66
(2014
). 12.
A.
Tout
, A. N.
Dabboucy
and K.
Howalla
, “Prime labeling of graphs
”, Nat. Acad. Sci. Letters
11
, 365
–368
(1982
).
This content is only available via PDF.
©2023 Authors. Published by AIP Publishing.
2023
Author(s)
You do not currently have access to this content.