Increasing the material removal rate in CNC Turning of Inconel 800 with a novel application of Silicon dioxide (CuO) nanofluid in flood cooling instead of Conventional coolant is the aim of this experimental study. Materials and Methods: The control group’s samples are machined with conventional coolant and the intervention group’s samples are machined with Silicon dioxide (CuO) nanofluid The 4% Silicon dioxide (CuO)Nanopowder concentration and Nanoparticle size less than 5nm size were preferred. The required minimum total sample size was calculated as 24 (12+12). The sample size calculated with the settings of G-Power 0.80 and alpha of 0.05. The near higher Taguchi standard experimental design L16 executed. The material removal rate observed for setting of 32 (16+16) different input combinations. The independent key process variables (inputs) included were: cutting speed, rotational speed, its feed rate, Coolant employed and depth of cut. Results: The group’s observations were validated and analysed statistically with SPSS software and found significant (Significant value 0.041<0.05). The output of the proposed method is analysed with ANOVA and also ranked the independent variables based on their influence in the objective. The input parameters optimized (local solution). Mathematical model developed to predict the response of MRR with respect to input levels (global solution). Conclusion: Within the limitations of this study, material removal rate was significantly improved with use of CuONanofluid in wet machining. That is, CuONanofluid improved 45.05% of material removal rate in CNC Turning of INCONEL 800 than conventional coolant.

1.
M.
Rifat
,
M. H.
Rahman
, and
D.
Das
, “
A review on application of nanofluid MQL in machining
.”
2017
. doi: .
2.
M. K.
Gupta
et al, “
Performance Evaluation of Vegetable Oil-Based Nano-Cutting Fluids in Environmentally Friendly Machining of Inconel-800 Alloy
,”
Materials
, vol.
12
, no.
17
, Aug.
2019
doi: .
3.
J. S.
Nam
,
P.-H.
Lee
, and
S. W.
Lee
, “
A Study on Machining and Environmental Characteristics of Micro-Drilling Process Using Nanofluid Minimum Quantity Lubrication
,”
ASME 2011 International Manufacturing Science and Engineering Conference
, Volume
2
.
2011
. doi: .
4.
M. K.
Gupta
et al, “
Machinability Investigations of Inconel-800 Super Alloy under Sustainable Cooling Conditions
,”
Materials
, vol.
11
, no.
11
, Oct.
2018
doi: .
5.
Environment and economic burden of sustainable cooling/lubrication methods in machining of Inconel-800
,”
J. Clean. Prod.
, vol.
287
, p.
125074
, Mar.
2021
.
6.
A.
Devillez
,
G.
Le Coz
,
S.
Dominiak
, and
D.
Dudzinski
, “
Dry machining of Inconel 718, workpiece surface integrity
,”
Journal of Materials Processing Technology
, vol.
211
, no.
10
. pp.
1590
1598
,
2011
. doi: .
7.
F.
Pusavec
et al, “
Sustainable machining of high temperature Nickel alloy – Inconel 718: part 2 – chip breakability and optimization
,”
Journal of Cleaner Production
, vol.
87
. pp.
941
952
,
2015
. doi: .
8.
F.
Pusavec
et al, “
Sustainable machining of high temperature Nickel alloy – Inconel 718: part 1 – predictive performance models
,”
Journal of Cleaner Production
, vol.
81
. pp.
255
269
,
2014
. doi: .
9.
A. H.
Tazehkandi
,
M.
Shabgard
, and
F.
Pilehvarian
, “
On the feasibility of a reduction in cutting fluid consumption via spray of biodegradable vegetable oil with compressed air in machining Inconel 706
,”
Journal of Cleaner Production
, vol.
104
. pp.
422
435
,
2015
. doi: .
10.
A.
Thakur
,
S.
Gangopadhyay
, and
A.
Mohanty
, “
Investigation on Some Machinability Aspects of Inconel 825 During Dry Turning
,”
Materials and Manufacturing Processes
, vol.
30
, no.
8
. pp.
1026
1034
,
2015
. doi: .
11.
S.
Zhang
,
J. F.
Li
, and
Y. W.
Wang
, “
Tool life and cutting forces in end milling Inconel 718 under dry and minimum quantity cooling lubrication cutting conditions
,”
Journal of Cleaner Production
, vol.
32
. pp.
81
87
,
2012
. doi: .
12.
D.
Ezhilarasan
,
T.
Lakshmi
,
M.
Subha
,
V. Deepak
Nallasamy
, and
S.
Raghunandhakumar
, “
The ambiguous role of sirtuins in head and neck squamous cell carcinoma
,”
Oral Dis.
, Feb.
2021
doi: .
13.
R.
Balachandar
et al, “
Enriched pressmudvermicompost production with green manure plants using Eudriluseugeniae
,”
Bioresour. Technol.
, vol.
299
, p.
122578
, Mar.
2020
.
14.
S.
Muthukrishnan
,
H.
Krishnaswamy
,
S.
Thanikodi
,
D.
Sundaresan
, and
V.
Venkatraman
, “
Support vector machine for modelling and simulation of heat exchangers
,”
Therm. Sci.
, vol.
24
, no.
1
Part B, pp.
499
503
,
2020
.
15.
A.
Kavarthapu
and
K.
Gurumoorthy
, “
Linking chronic periodontitis and oral cancer: A review
,”
Oral Oncol.
, p.
105375
, Jun.
2021
.
16.
S. C.
Sarode
,
S.
Gondivkar
,
G. S.
Sarode
,
A.
Gadbail
, and
M.
Yuwanati
, “
Hybrid oral potentially malignant disorder: A neglected fact in oral submucous fibrosis
,”
Oral Oncol.
, p.
105390
, Jun.
2021
.
17.
Hannah
R.
,
P.
Ramani
,
W.M.
Tilakaratne
,
G.
Sukumaran
,
A.
Ramasubramanian
, and
R. P.
Krishnan
, “
Author response for ‘Critical appraisal of different triggering pathways for the pathobiology of pemphigus vulgaris— A review
.’”
Wiley
, May 07,
2021
. doi: .
18.
D.
Sekar
,
D.
Nallaswamy
, and
G.
Lakshmanan
, “
Decoding the functional role of long noncoding RNAs (lncRNAs) in hypertension progression
,”
Hypertension research: official journal of the Japanese Society of Hypertension
, vol.
43
, no.
7
. pp.
724
725
, Jul.
2020
.
19.
P.
Appavu
,
V.
Ramanan
M,
J.
Jayaraman
, and
H.
Venu
, “
NOx emission reduction techniques in biodiesel-fuelled CI engine: a review
,”
Australian Journal of Mechanical Engineering
, vol.
19
, no.
2
, pp.
210
220
, Mar.
2021
.
20.
S.
Menon
,
H.
Agarwal
,
S.
Rajeshkumar
,
P. Jacquline
Rosy
, and
V. K.
Shanmugam
, “
Investigating the Antimicrobial Activities of the Biosynthesized Selenium Nanoparticles and Its Statistical Analysis
,”
Bionanoscience
, vol.
10
, no.
1
, pp.
122
135
, Mar.
2020
.
21.
R.
Gopalakrishnan
,
V. M.
Sounthararajan
,
A.
Mohan
, and
M.
Tholkapiyan
, “
The strength and durability of fly ash and quarry dust light weight foam concrete
,”
Materials Today: Proceedings
, vol.
22
, pp.
1117
1124
, Jan.
2020
.
22.
V. R.
Arun Prakash
,
J. F.
Xavier
,
G.
Ramesh
,
T.
Maridurai
,
K. S.
Kumar
, and
R. B. S.
Raj
, “
Mechanical, thermal and fatigue behaviour of surface-treated novel Caryotaurensfibre–reinforced epoxy composite
,”
Biomass Conversion and Biorefinery
, Aug.
2020
doi: .
23.
Muruganantham
Ponnusamy
,
Bhanu Pratap
Pulla
,
Sivakumar
Karthikeyan
,
S.
Ravindran
,
Balachandra Pattanaik and Ram Subbiah ‘Mechanical Strength and Fatigue Fracture Analysis on Al-Zn-Mg Alloy with the Influence of Creep Aging Process
,
Advances in Materials Science and Engineering
,
2021
.
24.
S.
Jayaprakash
,
S. Siva
Chandran
,
Bhiksha
Gugulothu
,
R.
Ramesh
,
M.
Sudhakar
and
Ram
Subbiah
Effect of Tool Profile Influence in Dissimilar Friction Stir Welding of Aluminium Alloys (AA5083 and AA7068
),
Advances in Materials Science and Engineering
,
2021
.
25.
Sakthivel
Perumal
,
Vijayan
Venkatraman
,
Rajkumar
Sivanraju
,
Addisalem
Mekonnen
and
Ramesh
Chinnappan
Effects of Nanofluids on heat transfer characteristics in shell and tube heat exchanger
Thermal science
, vol.
26
, no.
2A
, pp.
835
841
,
2022
.
26.
Sakthivel
Perumal
,
Dinesh
Sundaresan
,
Rajkumar
Sivanraju
,
Nega
Tesfie
,
Kamalakannan
Ramalingam
, ‘
Heat transfer analysis in counter flow shell and tube heat exchanger using design of Experiments
Thermal science
, vol.
26
, no.
2A
, pp.
843
848
,
2022
.
27.
Yogesh
Palani
,
Chandramohan
Devarajan
,
Dhanashekar
Manickam
Performance and emission characteristics of biodiesel-blend in diesel engine: A review
’,
Environmental Engineering Research, Korean society of Environmental Engineers
, vol.
27
, no.
1
, pp.
1
12
,
2022
.
28.
Gurukumaresan
,
D.
,
C.
Duraisamy
, and
R.
Srinivasan
. ‘
Optimal Solution of Fuzzy Transportation Problem Using Octagonal Fuzzy Numbers
Computer Systems Science And Engineering
, vol.
37
, no.
3
, pp.
415
421
,
2021
, DOI: .
29.
Srinivasan
,
R.
, and
V.
Vijayan
. “
Optimal ordering strategy pricing model with worsening materials in fuzzy environment
.”
Materials today: Proceedings
21
, pp.
158
163
,
2020
. DOI:
30.
Srinivasan
,
R.
,
N.
Karthikeyan
,
K.
Renganathan
, and
D. V.
Vijayan
. “
Method for solving fully fuzzy transportation problem to transform the materials
.”
Materials today: proceedings
(
2020
). DOI:
31.
Srinivasan
,
R.
, “
On solving fuzzy linear fractional programming in material aspects
.”
Materials Today: Proceedings
, vol.
21
, pp.
155
157
,
2020
.
32.
Gurukumaresan
,
D.
,
Duraisamy
,
C.
,
Srinivasan
,
R.
, and
Vijayan
,
V.
,
Optimal solution of fuzzy assignment problem with centroid methods
.
Materials Today: Proceedings
, vol.
37
, pp.
553
555
,
2021
.
33.
Srinivasan
,
R.
,
Nakkeeran
,
T.
,
Renganathan
,
K.
and
Vijayan
,
V.
,
The performance of pentagonal fuzzy numbers in finite source queue models using Pascal’s triangular graded mean
.
Materials Today: Proceedings
, vol.
37
, pp.
947
949
,
2021
.
34.
Thangapandi
,
C.
,
Renganathan
,
K.
,
Muthukumar
,
S.
and
Srinivasan
,
R.
,
Analytical solutions of non-linear boundary value problem for chemical reactions of enzyme substrate
.
Malaya Journal of Matematik (MJM)
, vol.
1
, pp.
435
444
,
2020
.
35.
Ramesh
,
R.
, and
Srinivasan
,
R.
,
Performance measures of two heterogeneous servers queueing models under trisectional fuzzy trapezoidal approach
.
Malaya Journal of Matematik (MJM)
, vol.
1
, pp.
392
396
,
2020
.
36.
Thangapandi
,
C.
,
Muthukumar
,
S.
,
Renganathan
,
K.
and
Srinivasan
,
R.
,
Analytical solution of non linear reaction equation in the spruce budworm and forest
.
Malaya Journal of Matematik (MJM)
, vol.
1
, pp.
389
391
,
2020
.
37.
Vivekanandan
,
M.
, and
Srinivasan
,
R.
,
Locating chromatic number of direct product of some graphs
.
Malaya Journal of Matematik (MJM)
, vol.
1
, pp.
363
366
,
2020
.
38.
C.
Padhy
and
P.
Singh
, “
Effects of the TribologicalBehaviour of h-BN MQL Nano Cutting Fluid (NCF-MQL) on Turning Inconel 625
,”
INCAS BULLETIN
, vol.
11
, no.
4
. pp.
107
121
,
2019
. doi: .
39.
N.
Ghosh
et al, “
Estimation of tool wear during CNC milling using neural network-based sensor fusion
,”
Mechanical Systems and Signal Processing
, vol.
21
, no.
1
. pp.
466
479
,
2007
. doi: .
40.
P.
Guo
et al, “
An Experimental Study on Finish Dry Milling of AISI 321 Stainless Steel
,”
Materials Science Forum
, vol.
861
. pp.
26
31
,
2016
. doi: .
41.
H. Z.
Li
,
H.
Zeng
, and
X. Q.
Chen
, “
An experimental study of tool wear and cutting force variation in the end milling of Inconel 718 with coated carbide inserts
,”
Journal of Materials Processing Technology
, vol.
180
, no.
1–3
. pp.
296
304
,
2006
. doi: .
42.
A. V.
Filippov
et al, “
Influence of Intense Bulk Plastic Deformation on the Roughness of a Milled AISI 321 Stainless Steel Surface
,”
Russian Engineering Research
, vol.
39
, no.
11
. pp.
986
989
,
2019
. doi: .
43.
A. V.
Filippov
et al, “
Influence of Intense Bulk Plastic Deformation on the Roughness of a Milled AISI 321 Stainless Steel Surface
,”
Russian Engineering Research
, vol.
39
, no.
11
. pp.
986
989
,
2019
. doi: .
44.
A.
Shokrani
,
V.
Dhokia
, and
S. T.
Newman
, “
Hybrid Cooling and Lubricating Technology for CNC Milling of Inconel 718 Nickel Alloy
,”
Procedia Manufacturing
, vol.
11
. pp.
625
632
,
2017
. doi: .
This content is only available via PDF.
You do not currently have access to this content.