This study was conducted on the Tigris River in Baghdad City from July 2020 to April 2021. Five sites were chosen along the Tigris River to investigate the river’s water quality through the 26 parameters. These were; Water Temperature (WT), Total Dissolved Solids (TDS), Turbidity, Dissolved Oxygen (DO), Alkalinity, Total Hardness (TH), pH, Calcium (Ca), Magnesium (Mg), Potassium (K), Sodium (Na), Bicarbonate (HCO3), Chloride (Cl), Fluoride, Nitrite (NO), Nitrate (NO), Phosphorus (PO4), Sulfate (SO4), Aluminum (Al), Biological oxygen demand (BOD), Chromium (Cr), Cyanide (CN), Iron (Fe), lead (pb), Nickle (Ni), and Zinc (Zn). Canadian Council of Ministers of the Environment water quality index (CCMEWQI) was calculated to show the differences in water quality between the sites and seasons, where the results come from Poor to Fair (45.74 to 68.82) in the dry season and Marginal to Fair (60.53 76.77) in the wet season. Principal Component Analysis (PCA) was used to identify the most influential parameters in Tigris River, where factor loadings1 (f1) were represented by turbidity, alkalinity, magnesium, BOD, and cyanide. In contrast, factor loadings 2 (f2) was distinguished by TDS, nitrite, sulfate, and total hardness as the major affected parameters. Both factors (f1 and f2) indicate the contribution of point pollution from industrial and agricultural activity and conclude that the main problem in the Tigris River is salinity. The correlation matrix shows a strong and positive relationship between total hardness and aluminum (+0.855**), sodium and iron (+0.81**), phosphorus and zinc (+0.66*), lead, and zinc (+0.85**). And negative Correlation between alkalinity and pH (-0.83**), total hardness and potassium (-0.71*), BOD and aluminum (-0.81**).

1.
L.
Giusti
,
A review of waste management practices and their impact on human health
.
Waste Manag.
,
8
,
2227
39
. (
2019
).
2.
S.
Xiu
,
A.
Shahbazi
, and
R.
Li
,
Characterization, Modification and Application of Biochar for Energy Storage and Catalysis: A Review
.
Trends in Renewable Energy
,
3
(
1
),
86
101
. (
2017
).
3.
S.
Hossain
,
Panel estimation for CO2 emissions, energy consumption, economic growth, trade openness and urbanization of newly industrialized countries
Energy Policy
,
39
,
6991
699
. (
2011
).
4.
B.P.
Singh
,
B. J.
Hatton
,
A. L.
Cowie
, and
A.
Kathuria
,
Influence of biochars on nitrous oxide emission and nitrogen leaching from two contrasting soils
.
Journal of Environment Quality
,
39
,
1224
. (
2010
)
5.
R.S.
Kookana
, “Advances in Agronomy”, Volume 112,
Biochar Application to Soil
.,
Elsevier, USA
,
2011
), pp
103
143
.
6.
D.
Rasse
,
A.
Budai
,
A.
O’Toole
,
X.
Ma
,
C.
Rumpel
,
S.
Abiven
,
Persistence in soil of Miscanthus biochar in laboratory & field conditions
,
PLoS ONE
,
12
(
9
). (
2017
)
7.
C.J.
Atkinson
,
J.D.
Fitzgerald
, and
N.A.
Hipps
,
Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: a review
.
Plant Soil
337
,
1
18
. (
2010
).
8.
J.
Karer
,
B.
Wimmer
,
F.
Zehetner
,
S.
Kloss
, and
G.
Soja
,
Biochar application to temperate soils: effects on nutrient uptake and crop yield under field conditions
.
Agricultural and Food Science
,
22
(
4
),
390
403
. (
2013
).
9.
O.D.
Nartey
, and
B.
Zhao
,
Biochar Preparation, Characterization, and Adsorptive Capacity and Its Effect on Bioavailability of Contaminants: An Overview
.
Advances in Materials Science and Engineering
,
1
12
. (
2014
).
10.
X.
Zhang
,
S.
Zhang
,
H.
Yang
,
Y.
Feng
,
Y.
Chen
,
X.
Wang
,
H.
Chen
,
Nitrogen enriched biochar modified by high temperature co2–ammonia treatment: Characterization and adsorption of CO2
,
Chem Eng J
,
257
,
20
27
. (
2014
).
11.
A. H. F.
Tahir
,
F.
Al-Ani
, and
A. M. J.
Al-Obaidy
,
Analysis of different date palm parts for char production
.
IOP Conference Series: Earth and Environmental Science
,
779
(
1
),
012015
. (
2021
).
12.
P.
Quosai
,
A.
Anstey
,
AK
Mohanty.
,
M.
Misra
,
Characterization of biocarbon generated by high- and low-temperature pyrolysis of soy hulls and coffee chaff: for polymer composite applications
.
R. Soc. open sci.
5
:
171970
. (
2018
).
13.
M.U.H.
Joardder
,
M.S.
Uddin
, and
M. N.
Islam
.
The Utilization of Waste Date Seed as Bio-Oil and Activated Carbon by Pyrolysis Process
.
Advances in Mechanical Engineering
4
,
316806
(
2012
).
14.
J.
Lehmann
,
M.C.
Rillig
,
J.
Thies
,
C.A.
Masiello
,
W.C.
Hockaday
, and
D.
Crowley
,
Biochar effects on soil biota – A review
.
Soil biology and biochemistry
,
43
(
9
),
1812
1836
, (
2011
).
15.
O.
Mašek
,
P.
Brownsort
, and
A.
Cross
,
Sohi
S.
,
Influence of production conditions on the yield and environmental stability of biochar
,
Fuel
,
103
,
151
155
, (
2013
).
16.
Al-Wabel
MI
,
Al-Omran
A
,
El-Naggar
AH
,
Nadeem
M
,
Usman
AR
.
Pyrolysis temperature induced changes in characteristics and chemical composition of biochar produced from conocarpus wastes
.
Bioresour Technol
,
131
,
374
379
. (
2013
).
17.
A. R. A.
Usman
,
A.
Abduljabbarc
,
M.
Vithanaged
,
Y. S.
Oke
,
M.
Ahmada
,
M.
Ahmada
,
J.
Elfakia
,
S. S.
Abdulazeema
,
M. I.
Al-Wabela
,
Biochar production from date palm waste: “Charring temperature induced changes in composition & surface chemistry
,
Journal of Analytical & Applied Pyrolysis
,
115
:
392
400
. (
2015
).
18.
G.
Vyavahare
,
P.
Jadhav
,
J.
Jadhav
,
R.
Patil
,
C.
Aware
,
D.
Patil
,
A.
Gophane
,
Y.-H.
Yang
, and
R.
Gurav
,
Strategies for crystal violet dye sorption on biochar derived from mango leaves and evaluation of residual dye toxicity
.
Journal of Cleaner Production
, (
2019
),
207
,
296
305
.
19.
A.
Enders
,
K.
Hanley
,
T.
Whitman
,
S.
Joseph
, and
J.
Lehmann
,
Characterization of biochars to evaluate recalcitrance and agronomic performance
.
Bioresour. Technol
,
114
,
644
653
. (
2012
).
20.
W.
Sun
,
S.
Zhang
and
C.
Su
, “Chapter 9: Impact of Biochar on the Bioremediation & Phytoremediation of Heavy Metal(loid)s in Soil”, in
Advances in Bioremediation & Phytoremediation
, (
InTech, Croatia
,
2018
), pp
149
168
.
21.
C.E.
Brewer
,
V.J.
Chuang
,
C.A.
Masiello
,
H.
Gonnermann
,
X.
Gao
, and
B.
Dugan
,
New approaches to measuring biochar density and porosity Biomass Bioenergy
,
66
,
176
185
. (
2014
).
22.
N.
Claoston
,
A. W.
Samsuri
,
M.H. Ahmad
Husni
,
A.M.S.
Mohd
,
Effects of pyrolysis temperature on the physicochemical properties of empty fruit bunch and rice husk biochars
.
Waste Manag Res
,
32
(
4
),
331
339
. (
2014
).
23.
Z.
Mahdi
,
A.
El Hanandeh
, and
Q.J.
Yu
, September.
Date palm (Phoenix Dactylifera L.) seed characterization for biochar preparation
. In
The 6th international conference on engineering, project, and production management (EPPM),
(
2015
), (pp.
2
4
).
24.
K.
Weber
, and
P.
Quicker
,
Properties of biochar. Fuel
,
217
,
240
261
. (
2018
).
25.
L.
Leng
,
Q.
Xiong
,
L.
Yang
,
H.
Li
,
Y.
Zhou
,
W.
Zhang
,
S.
Jiang
,
H.
Li
, and
H.
Huang
,
an overview on engineering the surface area and porosity of biochar
.
Sci Total Environ
;
763
:
144204
. (
2021
).
26.
Z.
Zhang
,
Z.
Zhu
,
B.
Shen
, and
L.
Liu
,
Insights into Biochar and Hydrochar Production and Applications: A Review
.
Energy
, (
2019
).
27.
F.R.
Oliveira
,
A.K.
Patel
,
D.P.
Jaisi
,
S.
Adhikari
,
H.
Lu
, and
S. Kumar
Khanal
,
Environmental application of biochar: Current status and perspectives
,
Bioresource Technology
(
2017
).
28.
B.
Chen
,
D.
Zhou
, and
L.
Zhu
,
Transitional adsorption and partitionof nonpolar and polar aromatic contaminants by biochars of pineneedles with different pyrolytic temperatures
.
Environ SciTechnol
,
42
:
5137
5143
. (
2008
).
This content is only available via PDF.
You do not currently have access to this content.