In reservoir engineering calculations, PVT properties are critical. There are two methods for calculating different PVT properties, empirical correlations, and machine learning techniques. The development of neural networks has paved the way for data mining modeling processes to be a key player in the oil and gas industry. However, there are several defects and limits in the neural network modeling structures because they were created with a specific collection of reservoir fluid properties. As a result, various artificial intelligence approaches to predicting PVT qualities became necessary. This paper uses Support Vector Machines (SVM) to formulate new oil properties correlations for Iraqi oil reservoir fluids. In a comparative study, the efficiency of support vector machines regression is compared with existing empirical correlations. The results show that support vector machines outperform some published correlations in accuracy and reliability, which is a promising future for support vector machine modeling.

1.
O. F.
Hassn
, and
D. J.
Sadiq
,
New Correlation for Oil Formation Volume Factor at and Below Bubble Point Pressure
.
Journal of Engineering
15
(
4
), (
2009
).
2.
M. S.
AL-Jawad
, and
O. F.
Hasan
, “
Comprehensive model for flash calculations of heavy oils using the Soave-Redlich-Kwong equation of state.” In
North Africa Technical Conference and Exhibition
. (
OnePetro
,
2012
).
3.
O.
Al-Fatlawi
,
M.M.
Hossain
, and
J.
Osborne
,
Determination of best possible correlation for gas compressibility factor to accurately predict the initial gas reserves in gas-hydrocarbon reservoirs
.
International Journal of Hydrogen Energy
,
42
(
40
),
25492
25508
., (
2017
).
4.
M. N.
Hemmati
, and
R.
Kharat
,
Evaluation of empirically derived PVT properties for Middle East crude oils.
(
2007
).
5.
J.
Velarde
,
T. A.
Blasingame
, and
W. D.
McCain
,
Correlation of black oil properties at pressures below bubble point pressure-A new approach
. (
Annual Technical Meeting
,
OnePetro
,
1997
).
6.
O. F.
Hassan
,
Correlation for solution gas-oil ratio of Iraqi oils at pressures below the bubble point pressure
.
Iraqi Journal of Chemical Petroleum Engineering
12
(
2
),
1
8
. (
2011
).
7.
E. A.
Osman
,
O. A.
Abdel-Wahhab
, and
M. A.
Al-Marhoun
,
Prediction of oil PVT properties using neural networks
. (
SPE Middle East Oil Show
,
OnePetro
,
2001
).
8.
E.A.
El-Sebakhy
,
T.
Sheltami
,
S.Y.
Al-Bokhitan
,
Y.
Shaaban
,
P.D.
Raharja
, and
Y.
Khaeruzzaman
,
“Support vector machines framework for predicting the PVT properties of crude oil systems.” In
SPE Middle East oil and gas show and conference
. (
OnePetro
,
2007
).
9.
M.
Almashan
,
Y.
Narusue
, and
H.
Morikawa
,
“Estimating PVT properties of crude oil systems based on a Boosted Decision Tree Regression modelling scheme with K-Means Clustering.” In
SPE/IATMI Asia Pacific Oil & Gas Conference and Exhibition
. (
Society of Petroleum Engineers
,
2019
).
10.
M. A.
Standing
, pressure-volume-temperature correlation for mixtures of California oils and gases.
Drilling and Production Practice
,
OnePetro
, (
1947
).
11.
M.
Vazquez
, and
H. D.
Beggs
,
“Correlations for fluid physical property prediction.” In
SPE Annual Fall Technical (SPE Annual Fall Technical Conference and Exhibition
,
OnePetro
,
1977
).
12.
O.
Glaso
,
Generalized pressure-volume-temperature correlations
.
Journal of Petroleum Technology
32
(
05
),
785
795
. (
1980
).
13.
M. A.
Al-Marhoun
,
PVT correlation for Middle East crude oils
.
Journal of Petroleum Technology
40
(
05
),
650
666
. (
1988
).
14.
G.
Petrosky
, and
F.
Farshad
,
“Pressure-volume-temperature correlations for Gulf of Mexico crude oils.” In
SPE annual technical conference and exhibition
, (
OnePetro
,
1993
)
15.
T.
Kartoatmodjo
, and
Z.
Schmidt
,
Large data bank improves crude physical property correlations
.
Oil and Gas Journal;(United States)
,
92
(
27
). (
1994
)
16.
T.
Joachims
,
Learning to classify text using support vector machines (Vol. 668)
.
Springer Science & Business Media., (Springer Science & Business Media
,
Netherlands
,
2002
).
17.
E. A.
El-Sebakhy
,
A. S.
Hadi
, and
K. A.
Faisal
,
Iterative least squares functional networks classifier
.
IEEE transactions on neural networks
18
(
3
),
844
850
. (
2007
).
18.
J.
Nagi
,
T.S.
Kiong
,
S.K.
Ahmed
, and
F.
Nagi
,
“Prediction of PVT properties in crude oil systems using support vector machines.” In
2009 3rd International Conference on Energy and Environment (ICEE)
(
IEEE
,
Malacca
,
2009
) pp.
1
5
.
19.
A.
Alanazi
, “
Support vector machines-based porosity prediction model in heterogeneous reservoir
.”
((IAMG) conference
,
2009
).
20.
A.
Al-Anazi
, and
I. D.
Gates
,
Support-vector regression for permeability prediction in a heterogeneous reservoir: A comparative study
.
SPE Reservoir Evaluation Engineering
13
(
03
),
485
495
. (
2010
).
21.
C. B.
Xu
,
J. C.
Liu
, and
J.
Li
,
Forecast model for gas well productivity based on GA and SVM
.
Applied Mechanics and Materials, Trans Tech Publ
,
71
,
4958
4962
, (
2011
).
22.
R.
Gholami
,
A. R.
Shahraki
, and
M. Jamali
Paghaleh
,
Prediction of hydrocarbon reservoirs permeability using support vector machine
.
Mathematical Problems in Engineering.
(
2012
).
23.
C. H. E. N.
Minfeng
,
B. A. I.
Xiaohu
and
W.
Zheng
,
Development index prediction of early polymer flooding based on support vector machine
.
Fault-Block Oil & Gas Field
19
(
2
),
199
202
. (
2012
).
24.
S. O.
Olatunji
,
A.
Selamat
, and
A. A. A.
Raheem
,
Extreme learning machines-based model for predicting permeability of carbonate reservoir
.
International Journal of Digital Content Technology its applications
7
(
1
),
450
. (
2013
).
25.
A.
Kamari
,
A.
Hemmati-Sarapardeh
,
S. M.
Mirabbasi
,
M.
Nikookar
, and
A. H.
Mohammadi
,
Prediction of sour gas compressibility factor using an intelligent approach
.
Fuel Processing Technology
116
,
209
216
. (
2013
).
26.
S.
Rafiee-Taghanaki
,
M.
Arabloo
,
A.
Chamkalani
,
M.
Amani
,
M. H.
Zargari
, and
M. R.
Adelzadeh
,
Implementation of SVM framework to estimate PVT properties of reservoir oil
. (
Fluid Phase Equilibria
346
,
25
-
32
. (2013).
27.
A.
Fayazi
,
M.
Arabloo
,
A.
Shokrollahi
,
M. H.
Zargari
, and
M. H.
Ghazanfari
,
State-of-the-art least square support vector machine application for accurate determination of natural gas viscosity
. (
Industrial Engineering Chemistry Research
53
(
2
),
945
958
. (
2014
)
28.
A.
Kamari
,
F.
Moeini
,
M. J.
Shamsoddini-Moghadam
,
S. A.
Hosseini
,
A. H.
Mohammadi
, and
A.
Hemmati-Sarapardeh
,
Modeling the permeability of heterogeneous oil reservoirs using a robust method
.
Geosciences Journal
20
(
2
),
259
271
. (
2016
).
29.
J. A.
Leal
,
L. H.
Ochoa
, and
J. A.
García
,
Identification of natural fractures using resistive image logs, fractal dimension and support vector machines
.
Ingeniería e Investigación
36
(
3
),
125
132
. (
2016
).
30.
Karimi
,
M.
, A.,
new approach to history matching based on feature selection and optimized least square support vector machine
.
Journal of Geophysics engineering
15
(
6
),
2378
2387
. (
2018
).
31.
A. Dehghani
Kiadehi
,
B.
Mehdizadeh
, and
K.
Movagharnejad
,
Bubble Pressure Prediction of Reservoir Fluids using Artificial Neural Network and Support Vector Machine
.
Journal of Chemical Petroleum Engineering
53
(
2
),
177
189
. (
2019
).
32.
L. M.
Da Silva
,
G. D.
Avansi
, and
D. J.
Schiozer
,
Support Vector Regression for Petroleum Reservoir Production Forecast Considering Geostatistical Realizations
.
SPE Reservoir Evaluation Engineering
23
(
04
),
1343
1357
. (
2020
)
33.
D. A.
Otchere
,
T. O. A.
Ganat
,
R.
Gholami
, and
S.
Ridha
,
Application of supervised machine learning paradigms in the prediction of petroleum reservoir properties: Comparative analysis of ANN and SVM models
.
Journal of Petroleum Science Engineering
,
108182
. (
2020
)
34.
V.
Vapnik
,
Support-vector networks
.
Machine learning
20
,
273
297
(
1995
).
This content is only available via PDF.
You do not currently have access to this content.