Cost–active oxidation is unique of the hot subjects in the remediation of environmental contaminants in current years. Copper metal consumption is situated known by way of well-organized activators in initiating some advanced oxidation processes toward producing free radicals. However, the investigations on such systems are very limited. In the present work, approach of post-treatment of wastewater utilizing solar photo-Fenton operated at a pilot scale in a solar Fenton oxidation from sun light (CPC) photoreactor is proposed. Subsequently, numerous source wastewater comprises certain quantities of copper metal, SFO homogeneously originated through heavy metal would consume request potential in numerous belongings of contaminated water remediation. This might remain done utilizing SFO toward minimalizing the Cu II in the industrial wastewater. To enhance the purification of pollutant water by heavy metal and, an original method of the squalor of the copper metal was emphasized. In the work-study was originate that the copper elimination remained touched 97.25 % at 100 ppm hydrogen peroxide, 20 ppm ferrous Sulphate pH=6.5, 5 ppm metal concentration, and 150 min solar time,. The aptitude of Fenton's reagent to eliminate copper ions was amplified after the addition of different concentration agents. Usually, SFO meaningfully through its high aptitude in the direction of oxide heavy metal in simulated wastewater (SWW).

1.
H.
Yu
,
J.
Pang
,
T.
Ai
, and
L.
Liu
,
J. Taiwan Inst. Chem. Eng.
62
,
21
30
(
2016
).
2.
S. A.
Al-Saydeh
,
M. H.
El-Naas
, and
S. J.
Zaidi
,
J. Ind. Eng. Chem.
56
,
35
44
(
2017
).
3.
S. B.
Farise
,
H. A.
Alabdly
, and
A. A.
Hasan
,
IOP Conf. Ser. Earth Environ. Sci.
790
(
1
) (
2021
).
4.
N.
Feng
,
X.
Guo
, and
S.
Liang
,
J. Hazard. Mater.
164
(
2–3
),
1286
1292
(
2009
).
5.
J.
Yang
,
M.
Yu
, and
W.
Chen
,
J. Ind. Eng. Chem.
21
,
414
422
(
2015
).
6.
A. A.
Hassan
,
R. T.
Hadi
,
A. H.
Rashid
, and
A. S.
Naje
,
Pollut. Res.
39
(
4
),
892
900
(
2020
).
7.
A. S.
Jafer
and
A. A.
Hassan
,
J. Phys. Conf. Ser.
1294
(
7
) (
2019
).
8.
G. F.
Naser
,
I. H.
Dakhil
, and
A. A.
Hasan
,
Glob. NEST J.
23
(
3
)
381
387
(
2021
).
9.
J. R.
Alvarez-Corena
,
J. A.
Bergendahl
, and
F. L.
Hart
,
J. Environ. Manage.
181
,
544
551
(
2016
).
10.
F.
Moghadam
and
A. G.
Pourafshar
,
Chem. Sci. Int. J.
27
(
2
),
1
7
(
2019
).
11.
A. A.
Hassan
,
H. T.
Naeem
, and
R. T.
Hadi
,
IOP Conf. Ser. Mater. Sci. Eng.
518
(
6
),
62003
(
2019
).
12.
D. B.
Hasan
,
A. R. Abdul
Aziz
, and
W. M. A. W.
Daud
,
Chem. Eng. Res. Des.
90
(
2
),
298
307
(
2012
).
13.
L.
Wang
,
J.
Jiang
,
J.
Ma
,
S.
Pang
, and
T.
Zhang
,
Chem. Eng. J.
427
,
131721
(
2022
).
14.
I.
Michael
,
E.
Hapeshi
,
C.
Michael
, and
D.
Fatta-Kassinos
,
Water Res.
44
(
18
),
5450
5462
(
2010
).
15.
M. S.
Nawaz
and
M.
Ahsan
,
Alexandria Eng. J.
53
(
3
),
717
722
(
2014
).
16.
M. C. V. M.
Starling
,
P. H. R. dos
Santos
,
F. A. R.
de Souza
,
S. C.
Oliveira
,
M. M. D.
Leão
, and
C. C.
Amorim
,
Environ. Sci. Pollut. Res.
24
(
14
),
12515
12528
(
2017
).
17.
I. C.
Carra
,
J. L. García
Sánchez
,
S.
Malato
, and
J. A. Sánchez
Pérez
,
Glob. Nest J.
16
(
3
),
445
454
(
2014
).
18.
D.
al deen
,
A.
Aljuboury
,
P.
Palaniandy
,
H. B. A.
Aziz
, and
S.
Feroz
,
Environ. Earth Sci.
75
(
4
),
1
12
(
2016
).
19.
H. T.
Naeem
,
A. A.
Hassan
, and
R. T.
Al-Khateeb
,
J. Pharm. Sci. Res.
10
(
9
),
2309
2313
(
2018
).
20.
L. F. A.
Freire
,
F. V.
Da Fonseca
,
L.
Yokoyama
, and
L. A. C.
Teixeira
,
Water Sci. Technol.
70
(
5
),
780
786
(
2014
).
21.
S. F.
Alturki
,
A. H.
Ghareeb
,
R. T.
Hadi
, and
A. A.
Hassan
,
IOP Conf. Ser. Mater. Sci. Eng.
1090
(
1
),
012012
(
2021
).
22.
A. A.
Hassan
,
F. Y.
Al-Jaberi
, and
R. T.
AL-Khateeb
,
J. Ecol. Eng.
23
(
1
),
14
23
(
2022
).
23.
F. Y.
Al-Jaberi
,
Chem. Eng. Process.: Process Intensif.
174
,
108864
(
2022
).
24.
P. B.
Vilela
et al,
J. Environ. Manage.
285
(
October 2020
) (
2021
).
25.
F. Y.
Al-Jaberi
,
B. A.
Abdulmajeed
,
A. A.
Hassan
, and
M. L.
Ghadban
,
Recent Innov. Chem. Eng.
13
(
1
),
55
71
(
2020
).
26.
A. O.
Jorgetto
et al,
Appl. Surf. Sci.
288
,
356
362
(
2014
).
27.
S. M.
Alardhi
,
F. Y.
Al-Jaberi
, and
L. M.
AlSaedi
,
Egypt. J. Chem.
63
(
12
),
4963
-
4973
(2018.
28.
F. Y.
Al-Jaberi
,
J. Environ. Chemical Engin.
6
(
5
),
6069
6078
(
2018
).
29.
A. A.
Hassan
,
F. Y.
Al-Jaberi
, and
R. T.
AL-Khateeb
,
J. Ecol. Eng.
23
(
1
),
14
23
(
2022
).
30.
W. T.
Mohammed
,
F. Y.
Al-Jaberi
,
Desalination Water Treat.
101
,
86
91
(
2018
).
31.
D. R.
Hadi
,
F. Y.
Al-Jaberi
, and
S. K.
Ajjam
,
J. Phys. Conf. Ser.
1999
,
012007
(
2021
).
32.
F. Y.
Al-Jaberi
,
IOP Conf. Ser. Mater. Sci. Eng.
928
(
2
),
022024
(
2020
).
33.
F. Y.
Al-Jaberi
,
W. T.
Mohammed
,
Desalination Water Treat.
111
,
286
296
(
2018
).
34.
A. S.
Atiyah
and
A. A. A.
Al-Samawi
,
AIP Conf. Proc.
2235
(
2020
).
35.
S. K.
Kansal
,
A. Hassan
Ali
, and
S.
Kapoor
,
Desalination
259
(
1–3
),
147
155
(
2010
).
36.
K.
O'Dowd
and
S. C.
Pillai
,
J. Environ. Chem. Eng.
8
(
5
),
104063
(
2020
).
37.
M. M. Ballesteros
Martín
,
J. A. Sánchez
Pérez
,
J. L. García
Sánchez
,
J. L. Casas
López
, and
S. Malato
Rodríguez
,
Water Res.
43
(
15
)
3838
3848
(
2009
).
This content is only available via PDF.
You do not currently have access to this content.