Several previous researches suggested designs for wearable devices to measure, check, and monitor a patient’s temperature and measure brain temperature. Scientific studies have shown that using hypothermic devices reduces mortality rates and reduces in the long run. In case of injury, the human brain is weak and affected by fluctuating temperatures, and it is challenging to control brain temperature manually. The Human Brain Hypothermia (HBH) methods were classified in this paper. The techniques and types of cooling systems to reduce brain temperature, including brain cooling, blood cooling, and skin surface cooling, have been reviewed. In addition, the main objective of the reviewed research is to discover the systems and devices that lower the temperature of the human brain and body. Moreover, a comparison of previous works for HBH was achieved in terms of adopted method, sensor type and location, and temperature Hypothermia value. The disadvantages or limitations of the previous studies were critically reviewed.

1.
L.
Rivera-Lara
,
J.
Zhang
, and
S.
Muehlschlegel
.
Therapeutic hypothermia for acute neurological injuries
.
Neurotherapeutics
9
(
1
),
73
86
(
2012
).
2.
H.
Wang
,
B.
Wang
,
K. P.
Normoyle
,
K.
Jackson
,
K.
Spitler
,
M. F.
Sharrock
,
C. M.
Miller
,
C.
Best
,
D.
Llano
, and
R.
Du
.
Brain temperature and its fundamental properties: a review for clinical neuroscientists
.
Frontiers in neuroscience
8
,
307
(
2014
).
3.
S.
Shefchyk
,
R.
Jell
, and
L.
Jordan
.
Reversible cooling of the brainstem reveals areas required for mesencephalic locomotor region evoked treadmill locomotion
.
Experimental brain research
56
(
2
),
257
262
(
1984
).
4.
V.
Cojocaru
,
T.
Fedorisin
,
E.
Niguleanu
, and
R.
Galus
.
Intelligent device for controlled therapeutic hypothermia. in
2018 10th International Conference on Electronics, Computers and Artificial Intelligence (ECAI)
, pages
1
6
,
2018
.
5.
K.
Hata
,
K.
Fujiwara
,
M.
Kano
,
T.
Inoue
,
S.
Nomura
,
H.
Imoto
, and
M.
Suzuki
.
Design of focal brain cooling system for suppressing epileptic seizures. in
2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pages
283
286
,
2017
.
6.
F. A.
Welsh
,
R. E.
Sims
, and
V. A.
Harris
.
Mild hypothermia prevents ischemic injury in gerbil hippocampus
.
Journal of Cerebral Blood Flow & Metabolism
10
(
4
),
557
563
(
1990
).
7.
H.
Wakamatsu
and
T.
Utsuki
.
Development of a basic air-cooling fuzzy control system for hypothermia
.
Artificial Life and Robotics
14
(
3
),
311
317
(
2009
).
8.
K. A.
Hassan
,
H. N.
Abdullah
, and
S. A.
Abd-AlHameed
.
IoT Based Brain Hypothermia Monitoring and Controlling Management System
.
Turkish Journal of Computer and Mathematics Education (TURCOMAT)
12
(
14
),
892
898
(
2021
).
9.
J. J.
Kim
,
N.
Buchbinder
,
S.
Ammanuel
,
R.
Kim
,
E.
Moore
,
N.
O’Donnell
,
J. K.
Lee
,
E.
Kulikowicz
,
S.
Acharya
, and
R. H.
Allen
.
Cost-effective therapeutic hypothermia treatment device for hypoxic ischemic encephalopathy
.
Medical Devices (Auckland, NZ)
6
,
1
(
2013
).
10.
V.
Cojocaru
and
V.
Mardari
.
Fuzzy controlled system for hypothermic brain therapy
.
Proceedings of the Romanian Academy-Series A
15
(
4
),
396
402
(
2014
).
11.
V.
Cojocaru
,
A.
Sidorenko
, and
D.
Vrabii
.
2D/3D heat transport maps of biological tissue in therapeutic hypothermia
.
Romanian Journal of Information Science and Technology
19
(
1–2
),
188
196
(
2016
).
12.
K. M.
Wong
.
Design of Bluetooth Compatible Temperature and Photoplethysmogram (PPG) Monitoring System.
2016
.
13.
P. M.
Kochanek
and
T. C.
Jackson
.
The brain and hypothermia—from Aristotle to targeted temperature management
.
Critical care medicine
45
(
2
),
305
(
2017
).
14.
V. P.
Cojocaru
,
S.
Groppa
,
A. S.
Sidorenko
,
T.
Fedorisin
,
R.
Galus
, and
E.
Niguleanu
.
Device for controlled hypothermia.
(
2018
).
15.
Y.
Su
,
C.
Ma
,
J.
Chen
,
H.
Wu
,
W.
Luo
,
Y.
Peng
,
Z.
Luo
,
L.
Li
,
Y.
Tan
, and
O. M.
Omisore
.
Printable, highly sensitive flexible temperature sensors for human body temperature monitoring: a review
.
Nanoscale Research Letters
15
(
1
),
1
34
(
2020
).
16.
S.
Ufoaroh
and
P.
Nnadikwe
.
Intelligent Patient Monitoring System for Heartbeat and Temperature with Wireless Emergency Alarm.
(
2021
).
17.
M.
Kapıdere
,
R.
Ahıska
, and
İ.
Güler
.
A new microcontroller-based human brain hypothermia system
.
Journal of medical systems
29
(
5
),
501
512
(
2005
).
18.
H.
Imoto
,
M.
Fujii
,
J.
Uchiyama
,
H.
Fujisawa
,
K.
Nakano
,
I.
Kunitsugu
,
S.
Nomura
,
T.
Saito
, and
M.
Suzuki
.
Use of a Peltier chip with a newly devised local brain–cooling system for neocortical seizures in the rat
.
Journal of neurosurgery
104
(
1
),
150
156
(
2006
).
19.
R.
Ahiska
,
A.
Yavuz
,
M.
Kaymaz
, and
İ.
Güler
.
Control of a thermoelectric brain cooler by adaptive neuro-fuzzy inference system
.
Instrumentation Science and Technology
36
(
6
),
636
655
20.
E.
Giuliani
,
S.
Magnoni
,
M.
Fei
,
A.
Addis
,
R.
Zanasi
,
N.
Stocchetti
, and
A.
Barbieri
.
A novel cooling device for targeted brain temperature control and therapeutic hypothermia: feasibility study in an animal model
.
Neurocritical care
25
(
3
),
464
472
(
2016
).
21.
A. H.
Yavuz
.
Design of a fuzzy logic controlled thermoelectric brain hypothermia system
.
Turkish Journal of Electrical Engineering & Computer Sciences
24
(
6
),
4984
4994
(
2016
).
22.
G. F.
Cattaneo
,
A. M.
Herrmann
,
S. A.
Eiden
,
M.
Wieser
,
E.
Kellner
,
S.
Doostkam
,
P.
Süß
,
S.
Kiefer
,
L.
Fauth
, and
C. J.
Maurer
.
Selective intra-carotid blood cooling in acute ischemic stroke: A safety and feasibility study in an ovine stroke model
.
Journal of Cerebral Blood Flow & Metabolism
41
(
11
),
3097
3110
(
2021
).
23.
Y.
Duan
,
D.
Wu
,
M.
Huber
,
J.
Shi
,
H.
An
,
W.
Wei
,
X.
He
,
Y.
Ding
, and
X.
Ji
.
New endovascular approach for hypothermia with intrajugular cooling and neuroprotective effect in ischemic stroke
.
Stroke
51
(
2
),
628
636
(
2020
).
24.
K. R.
Diller
and
L.
Zhu
.
Hypothermia therapy for brain injury
.
Annual review of biomedical engineering
11
,
135
162
(
2009
).
25.
T. S.
Olsen
,
U. J.
Weber
, and
L. P.
Kammersgaard
.
Therapeutic hypothermia for acute stroke
.
The Lancet Neurology
2
(
7
),
410
416
(
2003
).
26.
D.
Imai
,
R.
Takeda
,
A.
Suzuki
,
N.
Naghavi
,
Y.
Yamashina
,
A.
Ota
,
S.
Matsumura
,
H.
Yokoyama
,
T.
Miyagawa
, and
K.
Okazaki
.
Effects of skin surface cooling before exercise on lactate accumulation in cool environment
.
European Journal of Applied Physiology
118
(
3
),
551
562
(
2018
).
27.
H. B.
Van Der Worp
,
M. R.
Macleod
,
P. M.
Bath
,
R.
Bathula
,
H.
Christensen
,
B.
Colam
,
C.
Cordonnier
,
J.
Demotes-Mainard
,
I.
Durand-Zaleski
, and
C.
Gluud
.
Therapeutic hypothermia for acute ischaemic stroke. Results of a European multicentre, randomised, phase III clinical trial
.
European stroke journal
4
(
3
),
254
262
(
2019
).
28.
A. M.
Kuczynski
,
S.
Marzoughi
,
A. S.
Al Sultan
,
F.
Colbourne
,
B. K.
Menon
,
A. C.
van Es
,
A. L.
Berez
,
M.
Goyal
,
A. M.
Demchuk
, and
M. A.
Almekhlafi
.
Therapeutic Hypothermia in Acute Ischemic Stroke—a Systematic Review and Meta-Analysis
.
Current Neurology and Neuroscience Reports
20
(
5
),
1
10
(
2020
).
29.
H.
Li
,
R. K.
Chen
,
Y.
Tang
,
W.
Meurer
, and
A. J.
Shih
.
An experimental study and finite element modeling of head and neck cooling for brain hypothermia
.
Journal of Thermal Biology
71
,
99
111
(
2018
).
This content is only available via PDF.
You do not currently have access to this content.