Sleep apnea disorder is one of the most widespread respiratory syndromes, interrupting breathing by preventing air from entering the lungs. This paper documents the design and implementation of a cost-effective and easy-to-conduct screening method for detecting and predicting sleep apnea events using a small number of sensors and a small, lightweight wearable device. The proposed sleep apnea system comprises sensors for heart rate, SpO2, and chest movement, an Arduino Uno microcontroller and a Bluetooth low-energy module. Sensory data were collected while the test subject was sleeping and compared with the benchmark home sleep apnea test device. Statistical analyses confirmed the performance of this study’s system, with experimental results closely conforming to the Benchmark; the proposed system’s accuracy was 99.94% for heart rate and SpO2 measurements, according to a Bland-Altman test requiring at least 95% concordance.

1.
M. Habeeb
Chyad
,
S. K.
Gharghan
, and
H. Qasim
Hamood
.
A Survey on Detection and Prediction Methods for Sleep Apnea
.
MS&E
745
(
1
),
012102
(
2020
).
2.
Z.
Dong
,
X.
Xu
,
C.
Wang
,
S.
Cartledge
,
R.
Maddison
, and
S. M. S.
Islam
.
Association of overweight and obesity with obstructive sleep apnoea: A systematic review and meta-analysis
.
Obesity Medicine
17
,
100185
(
2020
).
3.
R.
Ferduła
,
T.
Walczak
, and
S.
Cofta
. The Application of Artificial Neural Network in Diagnosis of Sleep Apnea Syndrome. in
Advances in Manufacturing II
, ed:
Springer
, pages
432
443
,
2019
.
4.
X.
Yao
,
M.
Li
,
L.
Yao
, and
L.
Shao
. Obstructive Sleep Apnea and Hypertension. in
Secondary Hypertension
, ed:
Springer
, pages
461
488
,
2020
.
5.
R.
Qie
,
D.
Zhang
,
L.
Liu
,
Y.
Ren
,
Y.
Zhao
,
D.
Liu
,
F.
Liu
,
X.
Chen
,
C.
Cheng
, and
C.
Guo
.
Obstructive sleep apnea and risk of type 2 diabetes mellitus: A systematic review and dose-response meta-analysis of cohort studies
.
Journal of Diabetes
12
(
6
),
455
464
(
2020
).
6.
M.
Ruchała
,
B.
Bromińska
,
E.
Cyrańska-Chyrek
,
B.
Kuźnar-Kamińska
,
M.
Kostrzewska
, and
H.
Batura-Gabryel
.
Obstructive sleep apnea and hormones–a novel insight
.
Archives of medical science: AMS
13
(
4
),
875
(
2017
).
7.
P. G.
Kamble
,
J.
Theorell-Haglöw
,
U.
Wiklund
,
K. A.
Franklin
,
U.
Hammar
,
E.
Lindberg
, and
J. W.
Eriksson
.
Sleep apnea in men is associated with altered lipid metabolism, glucose tolerance, insulin sensitivity, and body fat percentage
.
Endocrine
,
1
10
(
2020
).
8.
J.
Zhou
,
X.-m.
Wu
, and
W.-j.
Zeng
.
Automatic detection of sleep apnea based on EEG detrended fluctuation analysis and support vector machine
.
Journal of clinical monitoring and computing
29
(
6
),
767
772
(
2015
).
9.
I.
Almendros
,
M. A.
Martinez-Garcia
,
R.
Farré
, and
D.
Gozal
.
Obesity, sleep apnea, and cancer
.
International Journal of Obesity
44
,
1653
1667
(
2020
).
10.
F.
Mendonça
,
S. S.
Mostafa
,
F.
Morgado-Dias
,
J. L.
Navarro-Mesa
,
G.
Juliá-Serdá
, and
A. G.
Ravelo-García
.
A portable wireless device based on oximetry for sleep apnea detection
.
Computing
100
(
11
),
1203
1219
(
2018
).
11.
R.
Haidar
,
I.
Koprinska
, and
B.
Jeffries
.
Sleep apnea event detection from nasal airflow using convolutional neural networks. In
International Conference on Neural Information Processing
,
Guangzhou, China
,
November 14–18, 2017
, pages
819
827
,
2017
.
12.
F.
Mendonca
,
S. S.
Mostafa
,
A. G.
Ravelo-García
,
F.
Morgado-Dias
, and
T.
Penzel
.
A review of obstructive sleep apnea detection approaches
.
IEEE Journal of biomedical and health informatics
23
(
2
),
825
837
(
2018
).
13.
E.
Malaekah
,
C. R.
Patti
, and
D.
Cvetkovic
.
Automatic sleep-wake detection using electrooculogram signals. In
2014 IEEE Conference on Biomedical Engineering and Sciences (IECBES), pages
724
728
,
2014
.
14.
L.
Haoyu
,
L.
Jianxing
,
N.
Arunkumar
,
A. F.
Hussein
, and
M. M.
Jaber
.
An IoMT cloud-based real time sleep apnea detection scheme by using the SpO2 estimation supported by heart rate variability
.
Future Generation Computer Systems
98
,
69
77
(
2019
).
15.
F.
Mendonça
,
S. S.
Mostafa
,
F.
Morgado-Dias
, and
A. G.
Ravelo-García
.
An oximetry based wireless device for sleep apnea detection
.
Sensors
20
(
3
),
888
(
2020
).
16.
B.
Ma
,
Z.
Wu
,
S.
Li
,
R.
Benton
,
D.
Li
,
Y.
Huang
,
M. V.
Kasukurthi
,
J.
Lin
,
G. M.
Borchert
, and
S.
Tan
.
A SVM-Based Algorithm to Diagnose Sleep Apnea. in
2019 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)
, pages
1556
1560
,
2019
.
17.
A. L. Chesson
Jr
,
R. B.
Berry
, and
A.
Pack
.
Practice parameters for the use of portable monitoring devices in the investigation of suspected obstructive sleep apnea in adults
.
Sleep
26
(
7
),
907
913
(
2003
).
18.
Y.
Fang
,
Z.
Jiang
, and
H.
Wang
.
A novel sleep respiratory rate detection method for obstructive sleep apnea based on characteristic moment waveform
.
Journal of healthcare engineering
2018
(
2018
).
19.
L.-W.
Hang
,
H.-L.
Wang
,
J.-H.
Chen
,
J.-C.
Hsu
,
H.-H.
Lin
,
W.-S.
Chung
, and
Y.-F.
Chen
.
Validation of overnight oximetry to diagnose patients with moderate to severe obstructive sleep apnea
.
BMC pulmonary medicine
15
(
1
),
24
(
2015
).
20.
G. C.
Gutiérrez-Tobal
,
L.
Kheirandish-Gozal
,
D.
Álvarez
,
A.
Crespo
,
M. F.
Philby
,
M.
Mohammadi
,
F.
del Campo
,
D.
Gozal
, and
R.
Hornero
.
Analysis and classification of oximetry recordings to predict obstructive sleep apnea severity in children. In
2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
,
MiCo - Milano Conference Center -
Milan, Italy
,
August 25-29 2015
, pages
4540
4543
,
2015
.
21.
D.
Sánchez-Morillo
,
M.
López-Gordo
, and
A.
León
.
Novel multiclass classification for home-based diagnosis of sleep apnea hypopnea syndrome
.
Expert Systems with Applications
41
(
4
),
1654
1662
(
2014
).
22.
J. V.
Marcos
,
R.
Hornero
,
D.
Alvarez
,
M.
Aboy
, and
F.
Del Campo
.
Automated prediction of the apnea- hypopnea index from nocturnal oximetry recordings
.
IEEE Transactions on Biomedical Engineering
59
(
1
),
141
149
(
2011
).
23.
N.
Oliver
and
F.
Flores-Mangas
.
Healthgear: Automatic sleep apnea detection and monitoring with a mobile phone
.
Journal of Communications
2
(
2
),
1
9
(
2007
).
24.
L.
Chen
,
X.
Zhang
, and
H.
Wang
.
An obstructive sleep apnea detection approach using kernel density classification based on single-lead electrocardiogram
.
Journal of medical systems
39
(
5
),
47
(
2015
).
25.
C.
Kalkbrenner
,
M.
Eichenlaub
,
S.
Rüdiger
,
C.
Kropf-Sanchen
,
W.
Rottbauer
, and
R.
Brucher
.
Apnea and heart rate detection from tracheal body sounds for the diagnosis of sleep-related breathing disorders
.
Medical & biological engineering & computing
56
(
4
),
671
681
(
2018
).
26.
A.
Yadollahi
,
E.
Giannouli
, and
Z.
Moussavi
.
Sleep apnea monitoring and diagnosis based on pulse oximetery and tracheal sound signals
.
Medical & biological engineering & computing
48
(
11
),
1087
1097
(
2010
).
27.
L.
Samy
,
P. M.
Macey
, and
M.
Sarrafzadeh
.
A daytime obstructive sleep apnea severity assessment framework. In
2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
,
Disney’s Contemporary Resort
,
Orlando, Florida
, pages
2365
2369
,
2016
.
28.
A.
Garde
,
P.
Dehkordi
,
D.
Wensley
,
J. M.
Ansermino
, and
G. A.
Dumont
.
Pulse oximetry recorded from the Phone Oximeter for detection of obstructive sleep apnea events with and without oxygen desaturation in children. In
2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
,
MiCo - Milano Conference Center -
Milan, Italy
,
August 25-29, 2015
, pages
7692
7695
,
2015
.
29.
W. S.
Almuhammadi
,
K. A.
Aboalayon
, and
M.
Faezipour
.
Efficient obstructive sleep apnea classification based on EEG signals
. In
2015 Long Island Systems, Applications and Technology
, pages
1
6
,
2015
.
30.
P. D.
Hung
.
Central Sleep Apnea Detection Using an Accelerometer. in
Proceedings of the 2018 International Conference on Control and Computer Vision
,
Singapore, Singapore
June 15 - 18, 2018
, pages
106
111
,
2018
.
31.
M.
Kopaczka
,
O.
Oezkan
, and
D.
Merhof
.
Face tracking and respiratory signal analysis for the detection of sleep apnea in thermal infrared videos with head movement. in
International Conference on Image Analysis and Processing
,
11-15 September 2017
Catania-Italy
, pages
163
170
,
2017
.
32.
Maxim Integrated. Recommended Configurations and Operating Profiles for MAX30101/MAX30102 EV Kits. Available. https://pdfserv.maximintegrated.com/eN6409.pdf (accessed on 23 April 2021).
33.
Maxim Integrated. MAX30101 datasheet. Available. http://datasheets.maximintegrated.com/en/ds/MAX30101.pdf (accessed on 28 September 2021).
34.
S.
Bakhri
,
E.
Rosiana
, and
R.
Saputra
.
Design of Low Cost Pulse Oximetry Based on Raspberry Pi
. in
Journal of Physics: Conference Series
.
International Conference on Science & Technology (ICoST 2019)
Yogyakarta, Indonesia
2 – 3 November
2019
.
35.
O. Yossef
Hay
,
M.
Cohen
,
I.
Nitzan
,
Y.
Kasirer
,
S.
Shahroor-karni
,
Y.
Yitzhaky
,
S.
Engelberg
, and
M.
Nitzan
.
Pulse oximetry with two infrared wavelengths without calibration in extracted arterial blood
.
Sensors
18
(
10
),
3457
(
2018
).
36.
Spectra symbol.
Flex sensor Data Sheet.
Available. https://www.sparkfun.com/datasheets/Sensors/Flex/FlexSensor.pdf (accessed on November 2021).
37.
Texas Instruments. HM-10 DataSheet. Available. https://people.ece.cornell.edu/land/courses/ece4760/PIC32/uart/HM10/DSD%20TECH%20HM-10%20datasheet.pdf (accessed on 10 October 2021).
38.
S. K.
Gharghan
,
R.
Nordina
, and
M.
Ismaila
.
Development and Validation of a Track Bicycle Instrument for Torque Measurement Using the Zigbee Wireless Sensor Network
.
International Journal on Smart Sensing & Intelligent Systems
10
(
1
) (
2017
).
39.
Parallax Microcontroller Data Acquisition for Excel (PLXDAQ). Available. http://www.parallax.com (accessed on 17 July 2021).
40.
S. K.
Gharghan
,
R.
Nordin
, and
M.
Ismail
.
Statistical validation of performance of ZigBee-based wireless sensor network for track cycling. In
2015 International Conference on Smart Sensors and Application (ICSSA)
, pages
44
49
,
2015
.
This content is only available via PDF.
You do not currently have access to this content.