As a result of the tremendous development in the field of information transfer technologies and the progress in designing advanced optical systems to keep pace with it, it has become necessary to develop an advanced technique that preserves data during transmission and reception within these technologies without losing part of it. In this work, fiber Bragg grating (FBG) has been selected to overcome the dispersal problem in telecommunication systems. This is done utilizing OptiGrating (V.7) simulation software to design a uniform FBG with a Bragg wavelength of 1550 nm with different grating lengths (2,4, and 6) mm. Then, simulation software OptiSystem (V.7) was used to design the optical communication system with different link lengths (5-50) km to test the validity of the designed FBG’s. From the obtained simulation results, the values of the Q-factor, total power, and gain for the designed communication link are increased with increasing grating length. These parameters are equal to 265.83 dΒ, 12.363 dΒm, and 17.74 dΒ for Q-factor, total power, and gain, respectively, for communication link equal to 5 Km. These obtained parameter values decreased when increasing the length of the transmission link to 50 km.

1.
M.
Chakkour
,
O.
Aghzout
,
B.
Ahmed
,
F.
Chaoui
, and
M.
El Yakhloufi
, “
Chromatic Dispersion Compensation Effect Performance Enhancements Using FBG and EDFA-Wavelength Division Multiplexing Optical Transmission System
”,
Int. J. of Optics
,
l6
, ID 6428972,
2017
.
2.
M.
Rahman
,
M.
Khan
,
L.
Yesmin
, and
S.
Khan
,”
Analyzing The Optimum Loss And Dispersion Of Different Types Of Optical Fibers
”,
Khulna University Studies
,
8
(
2
):
193
198
,
2007
.
3.
M. M.
Eid
,
V.
Sorathiya
,
S.
Lavadiya
,
A.
Helmy
and
A. N. Z.
Rashed
, “
Technical specifications and spectral performance characteristics of dispersion flattened fiber (DFF) in optical fiber systems
”,
Journal of Optical Communications
, DOI,
2021
.
4.
B. A.
Naguib
,
M. M.
Ata
,
M. M.
Alzalabani
, and
B. B.
Yousif
, “
Performance evaluation and enhancement of apodized fiber Bragg grating for dispersion compensation
”.
AIP Advances
,
11
,
2021
.
5.
A.
Verma
,
A.
Jaiswal
, and
M.
Kumar
, “
An Improved Methodology for Dispersion Compensation and Synchronization in Optical Fiber Communication Networks
”,
IJETAE.
3
,
5
:
769,775
,
2013
.
6.
I.
Ayesta
,
J.
Zubia
,
J.
Arrue
, M.
Asunción Illarramendi, and M. Azkune, “Characterization of Chromatic Dispersion and Refractive Index of Polymer Optical Fibers
”,
Polymers
,
9
,
730
, : 1-11,
2017
.
7.
A.
Ali
,
S.
Mutashar
,
A.
Hammadi
, “
Dispersion compensation of optical systems utilizing fiber Bragg grating at 15 Gbits/s
”,
IJEE C S.
,
22
,
1
:
369
378
,
2021
.
8.
S. O.
Onidare
,
O. A.
Tiamiyu
,
O. T.
Ajayi
,
E. S.
Ibironke
, and
A. A.
Ayeni
, “
Optical Dispersion Compensation Using Different Modulation Formats
”,
LAUTECH Journal of Engineering and Technology
,
15
,
60
67
,
2021
.
9.
D.
Grobnic
,
C.
Hnatovsky
,
S.
Dedyulin
,
R. B.
Walker
,
H.
Ding
and
S. J.
Mihailov
, “
Fiber Bragg Grating Wavelength Drift in Long-Term High Temperature Annealing
Sens.
,
21
,
2021
.
10.
C.
Luo
,
H.
Wang
,
D.
Zhang
,
Z.
Zhao
,
Y.
Li
,
C.
Li
and
K.
Liang
, “
Analytical Evaluation and Experiment of the Dynamic Characteristics of Double-Thimble-Type Fiber Bragg Grating Temperature Sensors
”,
J. Micro-Machines.
12
,
2021
.
11.
M.
Hossain
,
A.
Adhikary
and
T.
Zaman
, “
Performance Investigation of Different Dispersion Compensation Methods in Optical Fiber Communication
.”,
AJRCOS.
5
,
36
44
,
2020
.
12.
Y.
Lee
,
CH.
Lee
,
Y.
Jung
,
M.
Oh
, and
S.
Kim
,”
Highly Birefringent and Dispersion Compensating Photonic Crystal Fiber Based on Double Line Defect Core
J. of the Optical Society of Korea
,
20
,
5
,:
567
574
,
2016
.
13.
Ali
F.
,
Ahmad
Sh.
,
Muhammad
F.
,
Abbas
Z.
,
Habib
U.
, and
Kim
S.
,”
Adaptive Equalization for Dispersion Mitigation in Multi-Channel Optical Communication Networks
”,
Electronics
,
8
,
1364
; doi:,
2019
.
14.
D.
Grobnic
,
C.
Hnatovsky
,
S.
Dedyulin
,
R. B.
Walker
,
H.
Ding
and
S. J.
Mihailov
, “
Fiber Bragg Grating Wavelength Drift in Long-Term High Temperature Annealing
”,.
Sens.,
21
,
2021
.
15.
S.
Ibrahim
,
J.
O’Dowd
,
V.
Bessler
,
D.
Karabacak
,
J.
Singera
,
Optimization of Fiber Bragg Grating Parameters for Sensing Applications
”,
Proc. of SPIE
,
10208
,
2017
.
16.
M.
Werneck
,
R.
Allil
,
B.
Ribeiro
and
F.
de Nazaré
,
A Guide to Fiber Bragg Grating Sensors
.
Intechopen
, ,
2013
17.
Anis
,
C.
Rashidi
,
A.
Rahman
,
S.
Aljunid
, and
N.
Ali
, “
Analysis of the effect of BER and Q-factor on free space optical communication system using diverse wavelength technique
”,
EPJ Web of Conferences
,
162
,
2017
This content is only available via PDF.
You do not currently have access to this content.