The impulse excitation technique (IET) is a convenient and versatile tool for characterizing the elastic and so-called “anelastic” (damping) response of ceramics and other brittle materials. In particular, when high-temperature IET equipment is used, the temperature dependence of Young’s modulus (and damping) can be determined during heating and cooling. Moreover, when presintered powder compacts are used, the IET can be applied to monitor changes of the material response not only with temperature itself, but also with the evolution of the microstructure, as soon as the original sintering temperature is exceeded. In this paper we explain this approach and give two instructive real-world examples, viz. sintering of a hydroxyapatite-alumina composite and a pure tin oxide ceramic. While in the first case the increase of Young’s modulus is essentially due to densification, in the second case this increase is entirely due to geometric and topological changes in the microstructure that are not accompanied by densification and shrinkage.

1.
G.
Roebben
et al,
Rev. Sci. Instrum.
68
,
4511
4515
(
1997
).
2.
ASTM E 1876-99,
Standard Test Method for Dynamic Young’s Modulus, Shear Modulus, and Poisson’s Ratio by Impulse Excitation of Vibration
(
American Society for Testing of Materials
,
West Conshohocken
,
1999
).
3.
W.
Pabst
et al,
J. Eur. Ceram. Soc.
31
,
2721
2731
(
2011
).
4.
W.
Pabst
et al,
Ceram. Int.
38
,
5931
5939
(
2012
).
5.
E.
Rambaldi
et al,
Ceram. Int.
43
,
6919
6924
(
2017
).
6.
E.
Gregorová
et al,
J. Eur. Ceram. Soc.
36
,
109
120
(
2016
).
7.
W.
Pabst
et al,
J. Eur. Ceram. Soc.
33
,
3085
3093
(
2013
).
8.
E.
Gregorová
et al,
Key Eng. Mater. 592–593
,
696
699
(
2014
).
9.
G.
Bruno
et al,
J. Mater. Sci.
47
,
3674
3689
(
2012
).
10.
W.
Pabst
et al,
Ceram. Int.
40
,
4207
4211
(
2014
).
11.
E.
Gregorová
et al,
Ceram. Int.
41
,
1129
1138
(
2015
).
12.
W.
Pabst
et al,
J. Eur. Ceram. Soc.
36
,
209
220
(
2016
).
13.
E.
Gregorová
et al,
Ceram. Int.
44
,
8363
8373
(
2018
).
14.
E.
Gregorová
et al,
J. Eur. Ceram. Soc.
39
,
1893
1899
(
2019
).
15.
E.
Gregorová
et al,
J. Eur. Ceram. Soc.
40
,
2063
2071
(
2020
).
16.
E.
Gregorová
et al,
J. Eur. Ceram. Soc.
41
,
3559
3569
(
2021
).
17.
P.
Šimonová
et al,
J. Eur. Ceram. Soc.
41
,
7816
7827
(
2021
).
18.
W.
Pabst
et al,
“Basic concepts and classical models of solid state sintering,” in Polycrystalline Materials – Synthesis, Performance and Applications
, edited by
J.
Olson
(
Nova Science Publishers
,
New York
,
2018
), pp.
1
64
.
This content is only available via PDF.
You do not currently have access to this content.